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Abstract
The latent structure of four-dimensional tensors can be investigated by means of the 
four-way CANDECOMP/PARAFAC model. This technique is seldom used because 
its estimating design is challenging from an algorithmic and interpretational stand-
point. Parameter estimation with a least-squares approach can be computationally 
costly, especially under difficult conditions such as factor collinearity and model 
over-specification. In this work, we implement a 4th-order extension of the efficient 
trilinear procedure INT-2 to tackle estimating setbacks and test it in a simulation 
study.

Keywords AQLD · CANDECOMP/PARAFAC · Computational efficiency · Multi-
way data · QALS · 4th-order tensor

1  Introduction and backgroud

The idea of simultaneously analyzing multiple two-way objects and studying the 
eigenstructure of higher-order tensors was formalized for the first time from a purely 
mathematical perspective in Hitchcock (1927, 1928) by showing how a tridimen-
sional tensor can be represented in polyadic form.

Third-order extensions of bilinear component models for data analysis made 
their appearance in the sixties. The pioneering work of Tucker (1966), who created 
the Tucker3 model, was shortly followed by the introduction of a more restrictive 
technique proposed simultaneously by Carroll and Chang (1970) and Harshman 
(1970) with the name of CANDECOMP and PARAFAC, respectively. These latter 
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techniques are often designated with the term of CANDECOMP/PARAFAC (CP) 
model as recommended by Kiers (2000) to standardize the technical vocabulary.

Many versions, extensions, and reinventions of the Tucker3 and CP models have 
been proposed, see Kroonenberg (2008) and Smilde et al. (2005) for a review. The 
natural extension to nth-order tensors with n > 3 of these three-way decompositions 
was envisaged from the beginning. Carroll and Chang (1970) already proposed a 
seven-way version of their algorithm.

The Tucker3 decomposition is generally perceived as the “true” higher-order 
extension of SVD because of its flexibility. This model is purely explorative, it can 
always be fitted to fully-crossed tridimensional data, and focuses only on maximiz-
ing explained variability. Tucker3 results are hard to interpret in terms of latent con-
structs because the model is characterized by sub-space uniqueness and rotational 
freedom. For this reason, it is the preferred method for dimensionality reduction and 
exploration of within-mode variability.

On the other hand, the CP model yields unique solutions under mild conditions. 
The model is component-unique because it imposes the restriction of the simulta-
neous simple structure assumption, namely, the idea that the underlying solution 
is unique for all samples (Cattell 1944). This characteristic makes the CP model 
appealing for exploring the latent structure of complex data but also harder to esti-
mate. There still exists an open discussion on applicative and theoretical aspects of 
the CP model, rarely addressed in a higher-order setting, some of which represent 
the focus of this work.

Applications on third-order tensors have become more customary in recent years. 
After achieving quick acceptance in the field of psychometrics and chemometrics, 
they have seen growing applicability also in other disciplines (neuroscience, signal 
processing, text mining, etc.). A comprehensive overview is provided in Acar and 
Yener (2008) and Kolda and Bader (2009) for all multilinear tools. It is evident that, 
outside natural sciences, the diffusion of the CP model is still lacking (Kroonenberg 
et al. 2016).

For n = 4 , applications are sporadic in all fields (Escandar et  al. 2007) even 
though it has been demonstrated that using two- or three-dimensional tools on four-
way tensors reduces the capability of extracting the intrinsic quadrilinear informa-
tion from the data and badly affects estimation (Zhang et al. 2019). The reason for 
such scarce success is linked to interpretation issues, procedural complexity, and 
parameter estimation difficulties.

The benchmark procedure for fitting the CP model is PARAFAC-ALS (ALS), 
which, however, has the disadvantage of being slow at converging. Moreover, the 
ALS estimation process is adversely affected, both in terms of accuracy and effi-
ciency, by specific data problems, namely factor collinearity, bad initialization, and 
wrong model specification. Possible solutions to these issues include model selec-
tion tools (Chen et  al. 2001; Timmerman and Kiers 2000; Bro and Kiers 2003; 
Ceulemans and Kiers 2006; Xia et  al. 2007b), and repeated random initialization. 
These fixes come at an additional computational cost, weighing down ALS conver-
gence even more. For large datasets, this problem becomes even more relevant.

The reason ALS is still the procedure of choice lies in its stable convergence and 
well-defined properties, such as a monotonically decreasing fit function.
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Estimation difficulties brought about the proliferation of alternative algorithms, 
some of which have been adapted to four-way CP with slight modifications. For 
details, see the APQLD, RSWAQLD, AWRCQLD, AQLD and SAQLD in Xia 
et al. (2007a), Fu et al. (2011), Kang et al. (2013), Qing et al. (2014), and Xie et al. 
(2017). These procedures are extensions of the best performing three-way alterna-
tives to ALS, namely APTD (Xia et al. 2005), ATLD (Wu et al. 1998) and SWATLD 
(Chen et al. 2000). Comparative studies for third-order tensors confirm that ALS is 
the most reliable choice under general circumstances (Faber et al. 2003; Tomasi and 
Bro 2006; Yu et  al. 2011; Zhang et  al. 2015). Even in the four-way comparative 
study of Xie et al. (2017), quadrilinear ALS (QALS) appears more stable, especially 
under difficult data conditions, and proves to be superior in terms of model fitting. In 
brief, despite positive features such as speedy convergence and better performance 
under collinearity and over-specification, alternative algorithms struggle to match 
ALS precision.

A recent research thread demonstrated that a combinatory approach, integrating 
algorithms with complementary points of strength, could provide a suitable solu-
tion (Gallo et al. 2018; Simonacci and Gallo 2019, 2020). Two integrated algorithms 
INT and INT-2 were proposed which concatenate SWATLD and ATLD steps with 
ALS, respectively, to ensure faster convergence, stability, and insensitivity to wrong 
model specification. From this perspective, we will be implementing a quadrilin-
ear integrated procedure (QINT-2), as a possible extension of this methodology, by 
also addressing the specificity of the four-way case. QINT-2 efficiency and stability 
performance is tested in a comparative Monte Carlo simulation study under varied 
conditions.

To conclude, we present an application in the social science field on Italian aca-
demics data. It will be illustrated how important issues such as gender, role, and 
regional differences can be easily studied by means of a four-way tool, which pro-
vides valuable and quickly interpretable insight for the implementation of educa-
tional policies for reducing gaps. Four-way results may be perceived as difficult to 
read for many reasons. Readability issues range from trivial aspects such as sign 
indeterminacy and oblique components to more substantial problems such as identi-
fying the correct meaning and dimensionality of the inherent structure. Nonetheless, 
most of these problems are marginal when the research query is clear. To this end, 
the practicability of the four-way CP model is exemplified with help of visualization.

In Sect.  2 4th-order tensors are introduced, then the four-way CP model with 
QALS estimation and the QINT-2 procedure are laid out; in Sect. 3 the simulation 
study comparing QINT-2 with QALS is presented; in Sect. 4 the application on Ital-
ian academics is illustrated, and lastly, Sect. 5 includes the final discussion.

2  Methods

In this section, the four-way CP model is illustrated, after introducing 4th-order ten-
sor notation. Afterward, an in-depth discussion on parameter estimation leads to the 
exposition of the proposed integrated methodology.
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2.1  Notation

A 4th-order tensor T(I × J × K × L) with generic element Tijkl is a data configura-
tion were values are stored along four ordered dimensions, conventionally identified 
as first mode with index [1,… , i,… , I] , second-mode with index [1,… , j,… , J] , 
third-mode with index [1,… , k,… ,K] and fourth mode with index [1,… , l,… , L].

Such tensor can be seen as a collection of first-order tensors or vectors called 
fibers by fixing all mode indices except one. By extending the concept of row and 
column vectors of a matrix, four types of fibers can be identified of I-, J-, K-, and 
L-dimensions. The total number of fibers of each type is obtained by the multiplica-
tion of the remaining indices. For example, there are IKL fibers Ti∶kl with dimension 
J.

Similarly, by fixing two or one indices, the tensor can be expressed as a collec-
tion of matrices or 3rd-order tensors. For example, by fixing the third and the fourth 
mode, we obtain a collection of K × L matrices T∶∶kl(I × J) and by fixing only the 
fourth mode, a collection of L third-order tensors T∶∶∶l(I × J × K) is yielded. This 
latter operation is defined in Xie et al. (2017) as four-way slicing.

The information contained in a 4th-order tensor can also be rearranged in many 
ways. In detail, objects of smaller dimensions can be built by juxtaposing one or 
more modes of the analysis. This operation is defined as flattening or unfolding.

A pseudo–fully stretched (PFS) array is a third-order block obtained by flattening 
the original tensor along one dimension. The tensor T  can be rearranged in many 
PFS configurations by considering different mode combinations and ordering. Only 
four out of the possible PFS objects will be described, as conducive to the model 
illustrated in the next subsection. Let us define the following PFS arrays desig-
nated by juxtaposed modes: TJK(I × JK × L) , TKL(J × KL × I) , TLI(K × LI × J) and 
T

IJ(L × IJ × K) , see Kang et al. (2013) for details. The 2nd-order sections found by 
fixing the last index of each of these blocks can be referred to as PFS array frontal 
slices and denoted with TJK

∶∶l
(I × JK) , TKL

∶∶i
(J × KL) , TLI

∶∶j
(K × LI) and TIJ

∶∶k
(L × IJ).

2.2  Four‑way CP mode and parameter estimation

A 4th-order tensor T  can be expressed in polyadic form by formulating its structural 
part T̂  as the sum of a finite number of 1st-order factors �f ∈ ℝ

I , �f ∈ ℝ
J , �f ∈ ℝ

K 
and �f ∈ ℝ

L:

Each f set of factors is defined as a tetrad and E(I × J × K × L) is the tensor of resid-
uals. The minimal number of tetrads required to describe the tensor represents its 
rank, denoted with R.

Four factor matrices can be derived from the polyadic expression, each stor-
ing the F first-order objects of the same dimension. These matrices corre-
spond to the first, second, third and fourth mode parameters and can be defined 

(1)T = T̂ + E =

F∑

f=1

�f◦�f◦�f◦�f + E.
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as: � = [�1,… , �f ,… , �F] with dimensions (I × F) , � = [�1,… , �f ,… , �F] 
with dimensions (J × F) , � = [�1,… , �f ,… , �F] with dimensions (K × F) and 
� = [�1,… , �f ,… , �F] with dimensions (L × F).

The polyadic decomposition is at the base of the CP model formulation. Given a 
noisy tensor, the CP model aims to find the F tetrads which ensure its best low-rank 
approximation. Ideally, the model is set by the user to extract F = R tetrads, in this 
case, it is also called rank-decomposition. It is impossible to know the real rank of a 
tensor in advance. Often the model is over-specified with F > R , causing estimation 
issues.

The four-way CP model can be described using a PFS array notation in the fol-
lowing manner

In this formulation the symbol ⊙ identifies the Khatri–Rao product while the objects 
denoted as diag(dl) , diag(ai) , diag(bj) and diag(ck) are diagonal matrices extracting 
the lth, ith, jth and kth row of the corresponding factor matrices.

The CP model has the appealing property of being unique under mild conditions 
also in a four-way setting (Sidiropoulos and Bro 2000). However, the determinacy of 
the model comes at the price of a finicky estimation process.

The preferred estimating procedure for fitting the model is QALS. This method is 
based on a simple least-squares optimization criterion. Using the notation in Eq. 2, 
the QALS objective function can be formulated in terms of PFS arrays as follows, 
where the symbol ‖ ⋅ ‖ denotes the Frobenius norm:

The QALS algorithm based on this function is an iterative procedure comprising 
four successive steps, each estimating one of the four sets of parameters. Conven-
tionally, the algorithm converges when Loss of Fit relative changes (rLoF) become 
smaller than a user set threshold (e.g. 1e−06).

As discussed in Sect. 1, the least-squares approach is designated as the procedure 
of choice in most comparison studies, both in a three-way (Faber et al. 2003; Tomasi 
and Bro 2006; Yu et al. 2011, 2012; Zhang et al. 2015) and four-way setting (Xie 
et al. 2017). Several benefits make QALS the reliable choice: (1) the algorithm is 
guaranteed to converge, (2) its convergence properties are clear; (3) it outperforms 
the competitors in terms of final fit and stability; (4) it is resistant to high noise 

(2)T
JK

∶∶l
= � diag(�l)(�⊙ �)t + E

JK

∶∶l
l = 1,… , L;

(3)T
KL

∶∶i
= � diag(�i)(�⊙ �)t + E

KL

∶∶i
i = 1,… , I;

(4)T
LI

∶∶j
= � diag(�j)(�⊙ �)t + E

LI

∶∶j
j = 1,… , J;

(5)T
IJ

∶∶k
= � diag(�k)(�⊙ �)t + E

IJ

∶∶k
k = 1,… ,K.

(6)min
�,�,�,�

=

L�

l=1

‖TJK

∶∶l
− T̂

JK

∶∶l
‖2 =

L�

l=1

‖TJK

∶∶l
− � diag(dl)(�⊙ �)t‖2.
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contamination. Nonetheless, it has been largely demonstrated that QALS records 
non-competitive convergence times. The algorithm has an inherent lack of efficiency 
connected to the usage of Khatri–Rao products on large matrices, which encumbers 
the convergence process, making it unsuitable for large tensors.

Moreover, specific conditions may cause the iterative process to slow down even 
more. Bad initialization values, collinearity and over-specification (Mitchell and 
Burdick 1993, 1994; Kiers 1998; Zhang et al. 2015) are likely to cause temporary 
degeneracies. In this scenario, the procedure progresses very slowly for many itera-
tions. The process results inefficient but eventually finds a satisfactory solution. On 
occasion, permanent degenerate solutions may also occur when the procedure fails 
to emerge from the slow-down. A degeneracy is flagged when two factors present a 
high negative correlation.

A strategy to help reduce degeneracies is to repeat the procedure from different 
random starting points and select the best solution (random runs). In this manner, 
the problem of degenerate solutions is mostly solved, however, an additional strain 
is put on computational time. Similarly, procedures devised to select the correct rank 
of the model in advance can also be computationally expensive and do not ensure a 
correct outcome.

These shortcomings call upon the search for an alternative, efficient algorithm, 
less vulnerable to the degeneracy conditions detailed for QALS.

In a three-way setting, one of the procedures considered to be particularly strong 
with respect to ALS weaknesses is ATLD. ATLD was introduced with the declared 
goal to be strong with respect to ALS’s major setbacks: sensitivity to over-factoring 
and slow convergence. The peculiar characteristic of this procedure is that it has a 
separate loss function for each set of parameters, focusing on the diagonal informa-
tion in the data.

In a four-way setting, the loss functions for ATLD, referred to as AQLD, can be 
expressed in many notations. Here, coherently with previous formulations, a PFS 
array notation is used

(7)LF(�) =

L�

l=1

‖TJK

∶∶l
− � diag(dl)(�⊙ �)t‖2;

(8)LF(�) =

I�

i=1

‖TKL

∶∶i
− � diag(ai)(�⊙ �)t‖2;

(9)LF(�) =

J�

j=1

‖TLI

∶∶j
− � diag(bj)(�⊙ �)t‖2;

(10)LF(�) =

K�

k=1

‖TIJ

∶∶k
− � diag(ck)(�⊙ �)t‖2.
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Four distinct loss functions ensure different response surfaces, a faster exit from 
temporary degeneracies, and a steeper convergence curve. In addition, due to the 
differential properties of these objective functions, AQLD is insensitive to over-
specification (Zhang et al. 2015).

Nevertheless, AQLD becomes unstable in presence of higher noise levels and 
greatly sacrifices precision. Both three-way procedures (SWATLD) and four-way 
extensions (RSWAQLD, AWRCQLD, and SAQLD) were implemented to compen-
sate for this problem by adding additional weights and terms to the loss functions. 
These modifications were not sufficient to reach QALS stability (Xie et al. 2017).

A viable solution to this problem was presented in a three-way setting in Gallo 
et al. (2018) and Simonacci and Gallo (2019, 2020). This approach based on algo-
rithm integration will be quickly recalled and then implemented in a novel four-way 
version in the following subsection.

2.3  Quadrilinear INtegrated algorithm

The integrated approach is based on the simple idea of combining the advantages of 
two fitting procedures and balancing out their specific performance issues. In detail, 
the main goal is to obtain an efficient estimation process that ensures the same sta-
bility of a least-squares method while dealing with collinearity and over-specifica-
tion more suitably. A compromise between reliability and speed is reached by first 
optimizing parameters with an efficient procedure and then refining results with 
ALS steps to get optimal fit and further stability.

2.3.1  Integrated approach in a three‑way setting

Two proposals were implemented in a three-way setting: the procedure INT, which 
concatenates SWATLD with ALS steps, and INT-2, which is more focused on 
boosting efficiency and uses the faster but less stable alternative ATLD. Both inte-
grated algorithms consist of two optimization stages. For exemplifying, INT-2 can 
be described in this fashion:

• In Stage I, ATLD estimation is carried out, allowing quick jumps in the conver-
gence process and helping retrieve the solution in case of difficult data conditions 
and over-specification. The procedure stops when the first stage rLoF criterion is 
met. The procedure allows the user to freely set the value for this interim con-
vergence parameter as long as it is equal to or larger than the final convergence 
rLoF threshold. The authors’ recommendation is to set interim convergence to 
1e − 02 under general conditions. Using a tighter parameter increases efficiency 
and over-specification tolerance, however, it may yield slightly noisier solutions.

• In Stage II, estimation is resumed with ALS steps to ensure desirable properties 
such as stability and least-squares results. It is important to note that this stage 
is mandatory. Even when the final rLoF is already reached at the end of Stage I, 
which can happen if the interim parameter is quite strict, the algorithm will still 
perform at least two ALS iterations.
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INT and INT-2 behave quite similarly in simulation studies as, despite the volatil-
ity of stand-alone ATLD, INT-2 does not inherit this characteristic. Overall INT-2 
appears faster than INT and just as reliable (Simonacci et  al. 2019; Simonacci 
2020).

2.3.2  QINT‑2

In extending the integrated algorithm methodology to 4th-order tensors, the first 
issue is to decide which procedure to use in Stage I for the efficiency boost. As 
previously discussed, there are several ATLD/SWATLD extensions to a four-way 
setting, namely RSWAQLD, AWRCQLD, AQLD, and SAQLD. Each alternative 
was considered carefully. A comparative study was not carried out as already pro-
vided by Xie et  al. (2017) in which the authors argue that SAQLD is the best 
option in terms of efficiency under general conditions, nonetheless it is unreliable 
for high noise and collinearity.

If all circumstances are considered, RSWAQLD and AQLD appear as the bet-
ter compromise. The performance of these algorithms is similar but, after a quick 
comparison, it was found that RSWAQLD regularization parameters add improve 
stability but complicate the estimation process and may slightly decrease effi-
ciency. This feature is desirable for a stand-alone procedure but not necessary 
for an integrated approach with a successive refinement stage. AQLD was thus 
selected for the four-way integrated alternative: QINT-2 was built with a starting 
AQLD stage followed by a QALS one, keeping the format of its three-way coun-
terpart INT-2.

In writing the procedure, a second relevant issue arose concerning computations. 
As shown in Qing et  al. (2014,  pp. 9–10), there are different formulations of the 
four-way problem, which require alternative arrangements of the original tensor. 
AQLD is generally computed with a PFS notation, as described in this paper, while 
conventionally QALS is presented using fully stretched matrices (two-way unfolded 
PFS arrays).

The use of different arrangements affects estimation steps. Avoidance of flat-
tening operations is generally conducive to better identification of parameters by 
preserving higher dimensionality while two-way unfolding can improve the speed 
of iterations but is more demanding in terms of memory due to larger Khatri–Rao 
products. Such aspects are rarely discussed in comparative studies, which limit 
themselves to the original formulations of the procedures.

In developing QINT-2, we decided to tackle this issue by presenting a consistent 
formulation. QALS was rewritten with a PFS notation, prioritazing memory usage. 
The revised QALS version is used for both QINT-2 second stage and the QALS 
algorithm in the comparative study. This choice seems like a sensible solution for a 
fair comparison, keeping in mind that the alternative notations are also feasible as 
long as consistently applied.

The full QINT-2 procedure is displayed in Algorithm 1. In the following section, 
the performance of QINT-2 is compared to QALS in a simulation study to assess its 
viability.
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3  Comparing QALS and QINT‑2

3.1  Simulation design

A Monte Carlo simulation study has been set up to appraise the efficiency gain 
ensured by QINT-2 versus QALS while monitoring stability. A comprehensive set 
of data conditions is considered to check performance in general and with respect 
to the specific problematic aspects of noise contamination, factor collinearity, and 
over-specification.

The following steps are implemented to generate data for each simulated 4th-
order tensor. The real solution factor matrices �(I × R) , �(J × R) , �(K × R) and 
�(L × R) are generated randomly from a uniform distribution. A predetermined level 
of factor collinearity (CONG) is then forced on them using the QR decomposition to 
impose a given upper triangular matrix.

At this point, a pure 4th-order tensor is computed and then contaminated with set 
percentages of homoscedastic noise HO and heteroscedastic noise HE. Error ten-
sors are created as normally distributed values. The heteroscedastic noise tensor is 
then multiplied by the pure tensor to provide distinct weights. Noise percentages 
(NOISE) are expressed in terms of total tensor inertia. For a more detailed explana-
tion of data generation please refer to the appendix in Simonacci and Gallo (2020) 
where similar parameters are described in a three-way setting.

This flexible design allows us to consider different combinations of values for the 
described parameters so that the 4th-order artificial tensors can replicate a variety 
of realistic conditions. The parameter values selected for this study are reported in 
Table 1.

All the possible combinations between three levels of CONG, three percentages 
of HE, and three percentages of HO were considered for a total of 27 experimental 
conditions. For each condition, 50 datasets were generated to stabilize estimates. A 
total of 1350 datasets were artificially created.

QINT-2 and QALS were carried out on all simulated datasets by imposing both 
F = R and F = R + 1 in order to assess their performance in the case of rank-decom-
position and over-specification. A final rLoF convergence of 1e − 06 was set in all 
cases. For QINT-2 the interim convergence was set to 1e − 02 as recommended.

Both procedures are computed using a 10 random runs initialization strategy. 
Without this approach, ALS struggles to converge when over-specified and, at times, 
encounters permanent degenerate solutions. It is demonstrated in a three-way setting 

Table 1  Parameters for 
comparative simulations R 3

I, J, K, L 50, 50, 50, 50
HO 15%    20%    25%
HE 10%    15%   20%
CONG 0.2    0.5    0.9
Final rLoF 10

−6

Repetitions 50
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that INT and INT-2 are more stable in this respect but occasionally also degenerate 
(Simonacci and Gallo 2019, 2020). Random runs nearly eliminate the permanent 
degeneracy problem; thus, in this work, 10 random runs are performed to ensure a 
fair comparison in terms of speed.

In the simulations, efficiency is assessed by considering CPU time to conver-
gence. CPU reports will refer to the performance of the algorithms on all random 
runs.

It is also critical to preventively make sure that the added efficiency of QINT-2 
does not somehow affect the stability and goodness of the solutions. To this end, two 
reliability diagnostics are considered. Monitoring the minimum value reached by 
the loss function (FIT) is fundamental. This diagnostic always favors QALS due to 
the inherent structure of its least-squares loss function. Other algorithms generally 
struggle to compete. In this perspective, it is essential to check if QINT-2 manages 
to yield a least-squares solution like QALS.

Similarly, the MSE measure is calculated to assess the amount of excess modeled 
noise. The four loading matrices were scaled to have factors with the same norm 
then their average MSE is computed. For details on specific formulas and other 
computational aspects refer to Simonacci and Gallo (2019).

The occurrence of degeneracies is not discussed here as the random runs ensure 
that no failed recoveries are flagged throughout simulations.

Both procedures were written in-house with R 4.1.1 (R Core Team 2020) and 
Rstudio IDE v.1.4.1106 (RStudio Team 2019) using PFS arrays, as specified in 
Algorithm I, with the support of the package ��������� (Todorov et  al. 2020). 
Simulations were carried out on a processing device with the following specifica-
tions: Intel(R) Xeon(R) Gold 6238 #8 CPU @ 2.10GHz 128GB RAM.

3.2  Comparative results

Starting from theoretical knowledge, QINT-2 is expected to yield least-squares 
results more efficiently than QALS, especially for problematic data features.

The simulation scheme was developed by creating wide-ranging data conditions 
to test this hypothesis and respond to three research queries. The following ques-
tions will be addressed: (1) is the capability of retrieving a least-squares solution of 
QINT-2 the same as QALS? (2) Is QINT-2 more efficient and stable than QALS in 
general terms? (3) How do different conditions such as noise, collinearity, and over-
specification affect the performance gap?

The FIT and MSE diagnostics can be of help to check whether QINT-2 con-
verges to a least-squares solution without modeling excessive noise. For all simula-
tions, the difference in model fit is computed as DIFFIT = FITQALS − FITQINT−2 . If 
abs(DIFFIT) ≤ 1e−04 , then the solutions are considered to be the same (Tomasi and 
Bro 2006).

The procedures differ more than 1e−04 (but less than 1e−03 ) only in a negligible 
percentage of simulations (4 instances out of the total) and, in this handful of cases, 
QINT-2 is slightly superior.
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The MSE diagnostic gives similar information as in none of the simulations sig-
nificant differences are detected. In response to (1), we conclude that QINT-2 is just 
as capable as QALS of retrieving a least-square solution and does not model exces-
sive noise like the stand-alone AQLD does.

The first step in assessing efficiency was to test throughout simulations if the 
mean CPU time employed by QALS and QINT-2 is significantly different. Signifi-
cance is confirmed by t-test results which yield a p value of ∼ 0 . In the case of rank-
decomposition, the efficiency gain is estimated in the interval [17%;32%] , while for 
over-specification the range is [19%;29%] . In response to question 2, we can state 
that QINT-2 proved to be more efficient than QALS under general circumstances.

To better grasp the effect of data conditions, the CPU TIME distributions by 
NOISE and CONG are displayed in Fig.  1 with respect to rank decomposition 
results. The NOISE parameter shows the combinations of HO and HE.

In general, QINT-2 is far more efficient: there is no scenario where QALS is not 
surpassed by QINT-2. Focusing on distributions’ shifts connected to NOISE lev-
els, we find that NOISE does not appear to be detrimental. No specific effect of 
either HO or HE is detected, except for CONG = 0.9 . Here we can see that for both 
algorithms, as the level of noise increases, estimation becomes speedier, possibly 
because the noise helps mitigate high collinearity.

Robustness to NOISE is a notable result for QINT-2. QALS is known to be 
insensitive to noise, whereas AQLD is badly affected. It is encouraging to see that 
QINT-2 inherits QALS stability rather than AQLD’s problems in this matter.

The congruence level affects both procedures. Looking at plot scales, we notice 
that a slight loss in efficiency is detected between CONG = 0.2 and CONG = 0.5 
while a big jump is recorded between CONG = 0.5 and CONG = 0.9 . At low and 
high collinearity, distributions show that estimation is more unstable than for the 
CONG = 0.5 case, where both procedures yield well-separated and relatively small 
box plots. In the CONG = 0.9 case, in particular, it is possible to see how QALS 

Fig. 1  Testing efficiency: CPU time by NOISE and CONG for rank-decompositions
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becomes more and more unpredictable (wide-ranging distribution) if compared to 
QINT-2.

Let us now focus on the over-specification case displayed in Fig. 2. The first thing 
we notice is that the scale of all plots is increased by much. NOISE and CONG 
have a similar effect as described in Fig. 1. The main difference, which demonstrates 
the stability problems encountered by QALS due to over-specification, is given by 
looking at the distributions. QINT-2 appears to be more stable in computational 
performance throughout simulations as the range of the plots is, in general, smaller 
than the QALS ones, which display much longer upper whiskers and boxes. To 
further demonstrate this, an F test to compare variances was performed. In detail, 
we checked if QALS variance is significantly greater. In all the over-specification 
CONG/NOISE scenarios, the test yields a p-value of ∼ 0.

To conclude, we can thus answer the last query (3). The procedures are affected 
by NOISE in a similar way. Higher congruence appears to increase the efficiency 
gap, not so much in terms of median values but in terms of stability. Likewise, over-
factoring increases QALS variability in convergence performance. This instability is 
due to QALS’s propensity to degenerate with excess factors.

4  Four‑way Italian academics application

In this section, we provide a demonstration of the four-way CP model’s usefulness 
and applicability. A case study on the variability structure of Italian academics dif-
ferentiated by gender-role and scientific areas throughout years and macro-regions is 
presented.

This data provides information on academic investment and University system 
diversification. By separately studying regional, time, and role variability, a four-
way CP model allows the measurement of mode entities deviations with respect to 

Fig. 2  Testing efficiency: CPU time by NOISE and CONG for over-specification
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a common structure in terms of scientific areas. The goal of the application is to 
unveil relevant differences by considering all modes separately and together.

A dataset of 283,437 observations concerning Italian academics information offi-
cially recorded by the Ministry of Education from 2005 to 2020 has been arranged 
along four modes, creating the 4th-order tensor T(5 × 14 × 6 × 5) . In detail, the first 
mode entities correspond to the I = 5 macro-regions: North-West (abbrev. NW), 
North-East (NE), Central regions (Central), South (South), and Islands (Islands); the 
second mode includes the J = 14 scientific areas described in Table 2; the third mode 
considers the K = 6 gender-role combinations: Female Researcher ( Researcher_F ), 
Female Associate Professor ( Associate_F ), Female Full Professor ( Full_F ), Male 
Researcher ( Researcher_M ), Male Associate Professor ( Associate_M ), Male Full 
Professor ( Full_M ); and lastly the fourth mode selects the L = 5 years 2005, 2010, 
2013, 2015 and 2020.

No additional pre-processing, such as column centering or normalization, was 
performed. This strategy was decided following Kroonenberg (2008), where it is 
recommended to pre-treat data with care in a multiway setting.

An F = 1 model was selected because it explains more than 90% of the total vari-
ability. Computations were carried out using QINT-2, however, the factor extracted 
by QALS was exactly the same. Given the small dimensions of the tensor, no algo-
rithm would particularly struggle in this instance.

We display results using a powerful one-dimensional visualization tool, the per-
component plot. This graphic allows plotting the loadings of all four modes together 
along the same direction, representing one of the F extracted factors. The main goal 
of this tool is to allow inter-modal comparisons and within-mode interpretation with 
respect to the latent measure. The per-component model for the F = 1 direction of 
the 4-way CP is displayed in Fig. 3.

Table 2  Scientific areas Abbrev. Scientific areas

01 Mathematical and computer sciences
02 Physical sciences
03 Chemical sciences
04 Geological sciences
05 Biological sciences
06 Medical sciences
07 Agricultural and veterinary sciences
08 Civil engineering and architecture
09 Industrial and information engineering
10 Antiquity, philological-literary and 

historical-artistic sciences
11 Historical, philosophical, pedagogical 

and psychological sciences
12 Legal sciences
13 Economics and statistics
14 Political and social sciences
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The first step in CP interpretation is to give meaning to the latent construct by 
referring to the variable mode, here given by the scientific areas. After a quick 
assessment, it is easy to interpret the factor as a measure of academics investment 
scale. In other words, the ranking of the areas on the construct shows at a glance 
how the educational areas are prioritized in Italy. In detail, we can observe how the 
area with more academics is 6 followed by 9 while the areas with a smaller number 
of academics are 14 and 4. This can be interpreted as the typical distribution of edu-
cational and research investment in Italy.

Each of the remaining modes can then be assessed separately by referring to the 
common construct. For the first mode, academics are distributed in larger numbers 
in the macro-region Central, followed by NW. NE and South record similar values 
while Islands is quite distanced. The third mode coefficients show that the most 
numerous type of academics is Researcher_M followed by Associate_M , Full_M , 
and Researcher_F . The Associate_F and, even more, the Full_F categories are very 
detached. Lastly, the fourth mode gives us information on the overall number of aca-
demics present in the university system. The year 2005 recorded the highest number 
of academics employed. Over the years, a decreasing trend is documented with a 
stabilization between 2015 and 2020.

On the per-component plot, across-mode relationships can also be ascertained. 
By reading second and third mode coefficients together, for instance, it is possible to 
see that Researcher_M has the highest value for area 6 and the lowest for area 4; the 
same can be observed for Associate_M and Researcher_F.

Similarly, it is also possible to consider the loadings of all modes simultaneously. 
For example, we can observe that Researcher_M in the scientific area 6 for the 
macro-region Central in 2005 recorded the highest value ever, which progressively 
decreases over the period considered. Analogous readings can be carried out for any 
combination of different modes.

This presentation of four-way CP output yields a condensed and quick snapshot 
of investment differences in order to evaluate gender/role and regional dispari-
ties across time. This is done in the perspective of possibly implementing policies 
that may help reduce the gap in terms of geographic location, role, and gender 
differences.

Fig. 3  F = 1 Per-component plot



 V. Simonacci, M. Gallo 

1 3

A four-way model provides a more accurate and simple method of detection of 
such differences than standard bilinear tools because: (i) it allows the assessment 
of all modes together, (ii) it keeps variability separate for each mode, (iii) it allows 
to focus on one mode at the time as well as to combine information (Kroonenberg 
2008).

The case study also demonstrates the ease of model interpretability. The per-com-
ponent plot is an intelligible tool in which mode relations are easily detected. The 
number of modes does not complicate interpretation for the CP model, as it might 
for a four-way Tucker model, because the latent measure is the same throughout 
dimensions. The only interpretational challenge, no matter the order of the tensor, is 
to understand the phenomenon behind the underlying construct.

5  Discussion

This contribution aims at addressing the efficiency issues connected with the four-
way CP model parameter estimation process. To this end, an alternative integrated 
estimation strategy is proposed and tested in simulations.

The most broadly used estimating algorithm QALS, albeit stable and well-
defined, is not competitive in terms of computational time as its convergence slope 
quickly flattens. QALS efficiency is further hampered by other issues such as over-
specification and collinearity. To address this difficulty, we propose to fit the quadri-
linear decomposition through an integrated optimizing design called QINT-2. This 
procedure is a two-stage scheme extending the INT-2 algorithm (Simonacci and 
Gallo 2020) to a four-way setting. By estimating parameters in two steps, first with 
AQLD and then with QALS in a PFS array formulation, QINT-2 derives desirable 
properties from both algorithms.

The implemented simulation study allows verifying performance assumptions by 
testing QINT-2 against the baseline algorithm QALS. Realistic data conditions are 
ensured by considering different combinations of noise and factor congruence. In 
brief, the following considerations emerged from the tests on artificial data. 

1. QINT-2 is more efficient than QALS in general and under all data conditions.
2. QINT-2 is more resistant to excess factors usage and collinearity than QALS, 

which records a less stable convergence behavior due to an increase in degenerate 
solutions during the performed random runs.

3. The boost in efficiency does not prevent QINT-2 from reaching a least-squares 
solution. This ability is demonstrated by an essentially identical performance of 
QINT-2 and QALS in terms of FIT and MSE. This is fundamental because it 
proves that the integrated approach does not inherit AQLD volatility and does 
not model excess noise.

4. High noise contamination does not badly affect QINT-2 as it does for AQLD.

To summarize, simulations indicate that QINT-2 is highly desirable because it is just 
as stable as QALS but more efficient.
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Compression tools can be used to boost efficiency (Kiers and Harshman 1997; 
Bro and Andersson 1998; Kiers 1998). They can be combined with both QALS and 
QINT-2 because they act on the original tensor rather than on the estimation pro-
cess. For this reason, compression would not affect the recorded performance differ-
ences in the simulation study.

It is also important to note that we preferred a conservative approach for the 
interim convergence parameter of QINT-2 Stage I, setting it to 1e − 02 . Stricter val-
ues may, however, strengthen QINT-2 computational efficiency. For larger datasets 
and cases at high risk of over-specification, stricter thresholds represent the best 
choice.

A short discussion on the formulation of the four-way model was also presented 
in the methodological section. We found in preliminary simulations on this matter 
that the algebraic steps to the solution are affected both in terms of efficiency and 
accuracy by the type of flattening and data arrangement selected. Here we simply 
decided to use a formulation consistent with AQLD’s original format to ensure a 
reliable comparison. Nonetheless, this non-trivial issue can be investigated even fur-
ther with an in-depth study on the computational consequences of these choices.

The four-way CP approach is exemplified in the application section. The principal 
merit of the case study is to show how the four-way CP model can be a useful tool 
in social sciences, especially with respect to the evaluation of individual differences. 
Thanks to the visual support provided by the per-component plot, the model yields 
a clear and powerful representation of the phenomenon by identifying a common 
latent direction which grants a quick assessment of the academic employment sys-
tem in Italy with its disparities. In detail, the model aims to evaluate the gender/role 
and location bias in academic employment across time. Many similar applications in 
the service evaluation area can be envisaged. To provide one relatable example, let 
us consider an educational quality study in which the multiple aspects of educational 
quality are differentiated by the type of course, location, and type of University.

From an algorithmic standpoint, it is clear that QINT-2 efficiency and insensi-
tivity to over-specification make it particularly effective for parameter estimation in 
social sciences problems. In this context, it is more difficult to assess the rank of 
the true quadrilinear solution. Additionally, complex data applications could present 
conditions that further inhibit estimation, making QINT-2 an even stronger option. 
This is the case of Compositional Data, vectors of relative information with a biased 
covariance structure. In Gallo et  al. (2018) is shown that an integrated approach 
works well for the specific challenges of Compositional Data. This aspect is easily 
extendable to a four-way setting.

The granted computational advancement can also be particularly beneficial for 
larger data. Nonetheless, the machine requirement may still become prohibitive, 
especially in terms of memory usage, as the Khatri–Rao products became exces-
sively large and hard to store. In this instance, more complex solutions may be 
required, such as sub-partitioning of the data (Phan and Cichocki 2011). It is also 
important to remember that the CP model aims at discovering the “real” multilinear 
solution in the data rather than simply finding a subspace that maximizes variabil-
ity. This can hardly be presumed for extremely large datasets and a size reduction 
through a Tucker decomposition is generally a better option. Similarly, even if from 
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an algebraic standpoint higher-order versions can be considered, computational 
requirements increase in terms of the number of operations and/or size of objects 
to store, and care should be used in assuming the existence of a real multicollinear 
structure.

The efficiency gain of QINT-2 is clear in this paper, however, a confrontation 
with the results obtained by INT-2 in a three-way setting, suggests that this improve-
ment is less marked for four-way data. The simulation study conditions are however 
not the same, so we cannot consider the results directly comparable and should limit 
ourselves to consider all output only with respect to the given data contingencies. 
From a broader perspective, it emerged that there is a need for a comprehensive sim-
ulation study of all four-way algorithms to better specify the points of strength of all 
procedures proposed so far, as it is still lacking for n > 3 tensors.
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