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1 Introduction

In this paper we propose an overview and recent developments of NSCA, considering

both indicator matrix and two or three way contingency matrices. In the last section we

discuss an approach for ordinal variables based on Partial Least Square (PLS).

2 Constraints Principal Component Analysis for qualitative variables (CPCA)

Let G, H1 and H2 be the binary indicator matrices related to the complete disjunc-

tive coding of the qualitative variables G, H1 and H2 observed on n individuals with

I, K and J categories respectively. And let the subspaces <G, <H1
and <H2

2 <n be
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. Searching for the axes of maximal inertia we per-

form the eigen-analysis of 1
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, is the Goodman-Kruskal's (� ) index. In case of three qualitative

variables (with <H1
and <H2

disjoint) the generalization of CPCA for the indicator matrices

can be found by the asymmetrical decomposition of 1
n
G0

hP2
k=1 (PHk

� Pm)
i
G (3). In order

to take into account the interaction among variables, we consider the product space <H12

spanned by the columns of H12 with K x Q categories. In this case CPCA is based on the

diagonalization of n�1G0 [P12 � Pm]G (4) with P12 = H12
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the constant C, is coincident with the Gray-William's (�) index. Furthermore, the analysis

of the conditional e�ects for example H1 lies on the diagonalization of n
�1G
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, is the Gray-William's partial association

index.

3 Non Symmetrical Correspondence Analysis for Contingency Table

The table 1 shows an overview of principal characteristics of the non symmetrical cor-

respondence analysis for two and three way contingency tables. For each analysis the trace

of matrix, for the constant term in the latter row, is the correspondent index. All prop-

erty of the analysis are illustrated in the references. Here for NSTCA we take into account

the possible interactions in three way contingency table. In order to show the interaction,

we consider fikj = f:kj
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P
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(6) where �i� and 'kj� are coordinates of

the I and KJ variable categories. The factor b'Mkj� may be decomposed in the following

way: b'Mkj� = b�k� +
b�j� (7). Reordering this vector in a two way matrix we perform the

generalized Singular Value Decomposition we get the coordinates of variables with con-

straints
P

k f:k:
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P
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b�j� = 0. Replacing these coordinates in (6), we have an es-

timation of fikj. We denote this quantity bfikj. We can show the following decompositionP
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4 Multivariate Co-Inertia Analysis with Categorical and Ordinal Variables by
PLS

Let Z = [Z1 j:::jZr j:::jZR] be the normalized disjunctive complete matrices of the R

predictor variables observed on the same n individuals (Z = nHr

�
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). Moreover let

Mr and N be the diagonal metric with respect to the generic Zr and G respectively. We
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= 1) and u (kuk2N = 1) the coeÆcients vectors of the linear combinations for

each Zr and G respectively. We have 1
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the ordinal information of original data on the �rst axes we consider the principal column
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be the column principal coordinates of the �rst axes.

4.1 MCOICAT Algorithm to preserve the variable ordering on the �rst axes

Step 1 Compute the new sub-vector '+r , by means of the theoretical values of a weighted

least squares monotone regression
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Step 2 Normalize the quantity '+r = '+rp
'+0r Mr'

+
r

with '+(1) =
h
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Step 3 By using the transition formula compute  +
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+
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Step 4 Go to step 1 until the inertia �+r does not increase and the vector '+(r) does not

change much

Step 5 Set '(1) = '+(1), v(1) = M
1
2'(1) and  (1) =  +

(1) so that the principal column coordi-

nates satisfy ordinal compliance.

4.2 MCOICAT Algorithm to preserve the variable ordering on the other axis.

For the determination of the remaining co-inertia s > 1 we maximize the covariance

between the component bs and csr by PLS algorithm, under the orthonormality constraints

on the eigenvectors. De�ne the residual matrix Zs�1
r as the orthogonal projection Zr of onto

subspaces spanned by the components c1; :::; cs�1, the PLS algorithm follows.

Step 1 Let Pc(1) = c(1)
�
c(1)0c(1)

��1
c(1)0 be the orthogonal projector with c(1) = P?

mZMv(1)
and set s = 2

Step 2 Compute the residual matrix Z(s) = P?

mZ
(s�1)M � Pc(s�1)P

?

mZ
(s�1)M

Step 3 Maximize the covariance criterion (9) using the residual matrix computing the �rst

eigenvector associated to the greatest eigenvalue
PR

r=1NG
0P?

mZ
(s)MrZ

(s)0P?

mGN

Step 4 Compute the components scores c(s) = Z(s)Mv(s) and the column component loading

's+1 =
q

�r
�s
v(s) by the eigenvector v(s), respectively

Step 5 Increase s by one and go to step 2, repeat for s = 3; : : : ; T where T is the number

of interactions so that all the elements of Z(s) are almost zero.

A modi�ed algorithm can be used for contingency tables (D'Ambra and ot., 2000).
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Trace of matrix Goodman-Kruskal's Multiple Partial Tallur's Marcotorchino's

(product with constant) � association Gray-William's index index

Gray-William's index (cluster analysis)
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Table 1: Non symmetrical correspondence analysis for two-three way contingence tables.
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