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Riassunto: l�analisi delle componenti principali (ACP) è, tra le tecniche di riduzione 
delle dimensioni, quella maggiormente utilizzata in quanto presenta delle proprietà 
ottimali rispetto alle altre presenti in letteratura. In molti casi reali, tuttavia, l�ACP 
genera dei risultati difficilmente interpretabili. Al fine di migliorare l�interpretabilità dei 
risultati, in letteratura sono state proposte diverse tecniche che fanno uso di criteri sub-
ottimali tra i quali l�analisi delle componenti semplici (SCA - Rousson and Gasser, 
2003). Obiettivo del presente lavoro è quello di confrontare le diverse tecniche proposte 
in letteratura e di proporre una variante di SCA che fa uso del coefficiente di 
correlazione vettoriale RV. 
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1. Introduction 
 
When the number of observed variables is very large, it may be advantageous to find 
linear combinations of the explanatory variables having the property to account for most 
of the variance in the observed variables.  
Among linear dimensional reduction techniques, Principal Component Analysis (PCA) 
presents many optimal proprieties. Unfortunately, in many applicative case, as in case 
of customer satisfaction data, all variables are strongly correlated and consequently the 
first principal component may be correspond to overall size. In these case, PCA doesn�t 
produce full interpretable results. To resolve these kinds of problems, many authors 
proposed some procedure that will be suboptimal compared to the principal components 
obtained by PCA but make more interpretable principal components. 
In literature three different strategies are proposed. The first is based on replacement of 
some elements of the correlation matrix with other than produce more simple and 
generally more interpretable results (Hausman, 1982; Vines, 2000; Rousson and Gasser, 



2003). The second is based on centroid methods (Choulakian, D�Ambra and Simonetti, 
2004). The last is based on a rotation methods of the loading matrix (Jolliffe, 1989; 
Jolliffe and Uddin, 2000 and 2003).  
Following Rousson and Gasser (2003), in this paper we propose to modify the 
algorithm used for the Simple Component Analysis (SCA) based on RV coefficients 
(SCA-RV) in order to improve interpretability of results. Moreover, to compare PCA, 
SCA, SPCA (Zous et al., 2004) ScoTLASS (Jolliffe and Uddin, 2003), Factorial 
Analysis based on varimax criterion (Hausman, 1982) with SCA-RV, an application on 
the level of the patient satisfaction in the service of a Neapolitan Children�s Hospital 
will be given.  
 
 
2. Simple and Interpretable versus optimality 
 
Simplicity does not assure more interpretable components but allows to analyze the case 
variables measure different aspects of a same theme and all the elements of the 
correlation matrix are strictly positive. A correlation matrix with this structure gives 
more interpretability problems when principal components are extracted. Unfortunately, 
there is a trade-off between the simplicity and optimality. When the simplicity is 
searched by rotated principal components (or block-components), the optimality is 
worsen because the block-components are correlated and less variability is extracted 
from the original variables, when the loss of extracted variability is small and the 
correlation between the components are low, it is advantageous use SCA-RV. 
Analogously to SCA, SCA-RV gives more simple loading matrix, only three kinds of 
values (positive, negative and zero) and the sum of loadings for each component is 
always zero. In this way, the block-components is just an averages and difference-
components just a simple contrast of variables. Differently to factorial analysis, SCA-
RV gives the possibility to choose the number of block-components. So the correlation 
between them is cut off. 
 
 
3. SCA-RV  
 
Let Y  be a matrix with p standardize random variables ( )pYY ,,1 K , such that YYC '=  is 
the correlation matrix with rank q ( )pq ≤ . Moreover, Let jp  (with qj ,,1K= ) be the 
column of a pxq  projection matrix P . PCA points out a solution P  with the following 
major properties: 1) the columns of P  are orthogonal, 2) the projected data YP  are 
uncorrelated, 3) the vector 1p  is chosen to maximize the variance of 1Yp  and jp  is 
chosen to maximize the variance of jYp  with 0' ' =jj pp  (for 'jj ≠  and qj ,,1K=  
and qj ,,2' K= ). These proprieties are desirable and in this sense PCA is a reduction 
technique with optimal proprieties.  
When all variables measure different aspects of a same theme all the elements of C are 
strictly positive. This structure of the correlation matrix gives more problems of 
interpretability of PCA results. In order to get more simple and generally more 
interpretable components sometimes a suboptimal solution is preferred to the optimal 
solution of PCA. Rousson and Gasser (2003) proposed a procedure that maximizes 
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criterion assures equivalent results to PCA only in case of uncorrelated components, 
while it is a penalized version of PCA criterion for correlated components. Seeking a 
system of q  simple components with b  blocks maximizing the cited criterion of 
optimality, the two stages SCA algorithm provides an approximation to the optimal 
system of simple components. With fixed values of b  and q , in the first stage of the 
algorithm b simple block components (components whose non zero loadings have all 
the same sign) are defined while in the latter ( )bq −  simple difference components 
(components which have some strictly positive and some strictly negative loadings) are 
described. 
First stage of SCA is to classify p  variables into b  disjoint blocks. The approximate 
block-structure in the correlation matrix leads to a maximal within block correlations 
and in the meantime to a minimal between blocks correlations. Authors solved this 
problem with an agglomerative hierarchical procedure based on a dissimilarity measure 
between clusters called �median linkage� alternative to the possible single or complete 
linkages. Coming from the matrix of loadings corresponding to the b  simple block 
components of the first stage, the second phase of the algorithm is based on a suitable 
difference component shrinkage procedure of the sequential first components of the 
residual variables obtained by regressing step by step the original variables on the first 
( )1−j  simple components. 
Our proposal modifies the criterion of solution at the first stage. Instead to use an 
agglomerative hierarchical procedure, which can lead to a non unique solution with a 
choice of a possible different link criterion, we propose to use the RV vectorial 
correlation coefficient proposed by Robert and Escoufier (1976). Several proposal in 
literature considered the use of the RV coefficients for variable selection; for example in 
order to select subsets of variables in the context of PCA (Bonifas et al, 1984; Mori et 
al. 1999). Robert and Escoufier (1976) have derived a measure of similarity of the two 
configurations, taking into account the possibly distinct metrics to be used on them to 
measure the distances between points. The measure is computed as 

( ) ( ) ( ) ( )[ ] 2122 '''', ZZtrVVtrZZVVtrZVRV =  
where V  and Z are centered matrices of V  and Z , respectively. This measure respects 
all the four conditions for a vectorial correlation coefficient proposed by Renyi (1959): 
a vectorial correlation coefficient r is an application  
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where V  and Z ( )nxsΨ∈  are not simultaneously null and nΨ is the set of  the squared 
real matrices of order n . This application verifies the following properties: 1) 

2( , )a b∀ ∈ ℜ , ( ) ( ) ( )ZVrbZVrZaVr ,,, == ; 2) ( ) ( )VZrZVr ,, = ; 3) if bZV =  then 
( ) 1, =ZVr ; 4) ( ) 0'0, =⇔= DZVZVr  with D weights diagonal matrix. 

A lot of vectorial correlation coefficients proposed in literature do not respect all the 
cited properties (Amenta, 1993).  
It can be shown that the RV coefficient is equivalent to squared Pearson's correlation 
coefficient between the association matrices, if these are rearranged as vectors and it is 



invariant to a change of scale. Moreover the RV coefficient can be linked also to a 
concept of proximity between matrices (Robert and Escoufier, 1976): 

( ) ( ) 1,0, =⇔= BARVBAdist . 
In this sense, the first stage of SCA can be synthesize in three most important steps: 

1. Start with p  blocks 1,..., pB B  where each block contains one of the original 
variables; 

2. Select two blocks IB  and JB  for which a measure of RV is biggest and 
aggregate them into a new block ( , )I JB ; 

3. If b  blocks remain then stop the loop, otherwise go back to step 2. 
Similarly to SCA, the agglomeration process could be continued until the RV 
correlation between some block components is larger than a prefixed value (e.g. 0,3 or 
0,4). All the proprieties of RV coefficient and the full algorithm will be given on the 
extended version of the paper. Moreover, to compare PCA, SCA, SPCA (Zous et al., 
2004), ScoTLASS (Jolliffe and Uddin, 2003), Factorial Analysis based on variamax 
criterion (Hausman, 1982) and SCA-RV an application on the level of the patient 
satisfaction in the service of a Neapolititan Children�s Hospital will be given. 
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