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Control Chart is a widely used on-line process control techniques to control
variability. This paper focuses on variability due to dispersion of a quality
characteristic. Classical methods of estimating parameters of the distribu-
tion of quality characteristic may be affected by the presence of outliers. In
order to overcome such situation, robust estimators, which are less affected
by the extreme values or small departures from the model assumptions, are
introduced in industrial application. This article introduced a modification
to trimmed standard deviation to increase its efficiency, and is used in con-
trolling process dispersion. Authors constructed a phase-I control chart de-
rived from standard deviation of trimmed mean, which is robust. Simulation
study is conducted to assess its performance at phase-II. This robust control
chart is compared with s-chart in terms of its efficiency to detect outliers or
assignable causes of variation as well as its Average Run Length.

keywords: Average Run Length, Control Limits, Outlier, Robust Control
Chart, Trimmed Mean.

1 Introduction

Shewhart control chart for sample standard deviation is a widely used process control
technique. Performance of a control chart is depending on designing its limits, as narrow-
ing or widening limits can influence probability of type I and type II errors respectively.
Its performance can also be affected by the presence of outliers. As sample standard
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deviation is defined on all data points in a sample, it is influenced by the extreme values
present in the subgroup. If subgroups taken in phase-I contain many outliers, 3-sigma
limits of s-chart may inflate and outliers remain unnoticed. This chart is based on the
assumption that the underlying distribution of quality characteristic is approximately
normally distributed, even though the actual distribution of s has long right tail. If
robust measures are used to estimate process dispersion and to construct limits, it can
over come such problems.

A robust estimator is an estimator that is insensitive to changes in the underlying
distribution and also resistant against the presence of outliers. There are many robust
measures of location and scale available in literature. Wilcox (2012) says by substitut-
ing robust measures of location and scale for the usual mean and variance, it should be
possible to obtain test statistics which are insensitive to the combined effects of variance
heterogeneity and non-normality. When robust measures are used to estimate parame-
ters of distribution of quality characteristics constructing limits, control chart procedures
become robust. Rocke (1989) suggested that in order to identify outliers easily, limits
of a control chart should frame based on robust measures while non-robust measures
should plotted on it.

Iglewicz and Langenberg (1986) proposed mean and range charts with control limits
determined by trimmed mean of the subgroup means and the trimmed mean of the
range. Rocke (1989) proposed standard deviation control charts based on the mean or
the trimmed mean of the subgroup ranges or subgroup Inter Quartile Ranges. Sev-
eral authors have developed robust control charts based on various measures of scale
namely Median Absolute Deviation (MAD) (Abu-Shawiesh, 2008; Adekeye, 2012; Adek-
eye and Azubuike, 2012), Dispersion on M-estimate (Shahriariet al., 2009), the Qn and
Sn estimates (Das, 2011), estimate obtained by the mean subgroup average deviation
from the median MD (Schoonhoven and Does, 2012) and standard deviation of Modified
Maximum Likelihood Estimator (Sindhumol and Srinivasan, 2015).

Trimmed mean (Tukey, 1948) and its standard error are more appealing because of its
computational simplicity. Apart from that, these measures are less affected by departures
from normality than the usual mean and standard deviation, as observations in the tail
are removed. Standard error of trimmed mean is not sufficient to estimate process
dispersion because of trimming subgroups (Dixon and Yuen, 1974). Standard estimator
of variance of trimmed mean is obtained through Winsorization (Wilcox, 2012). Huber
(1981) showed a jackknife estimator for its variance. Capéraà and Rivest (1985) derived
an exact formula for variance of the trimmed mean as a function of order statistics, when
trimming percentage is small.

As trimming makes a reduction in dispersion, estimating population dispersion based
standard error of trimmed mean will not give a clear picture of actual dispersion. Vari-
ance of trimmed mean which is a function of order statistics or its variance modification
based on Winsorization, are not helping in this regard. Hence trimmed standard devia-
tion has a limited exposure to applications in literature. In this paper, authors made a
modification to improve variance of the trimmed mean by multiplying it with a tuning
constant to reduce the effect of loss due to trimming so that its robust qualities are not
much disturbed. A robust control chart for controlling process dispersion is developed
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based on this modified measure.

2 Robust control chart based on trimmed standard
deviation

It is interesting to see that about 1895 Mendeleev preferred to take the mean of the
middle third to test for harmony of the series of observation. One problem with the
mean is that the tails of a distribution can dominate its value. In order to reduce the
effect of tails of a distribution, it can be simply removed. The γ-trimmed mean is

µγ =
1

1 − 2γ

∫ x1−γ

xγ

xdF (x) . (1)

Let x(1) ≤ x(2)... ≤ x(n) denote an order statistics sample of size n, from a population
having symmetric distribution. The r -times symmetrically trimmed sample is obtained
by dropping both r -lowest and r -highest values. Here r = [γn] is the greatest integer
and trimming is done for γ% (0 ≤ γ ≤ .5) of n. Trimmed mean is defined as
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Sample standard deviation of observations from trimmed mean is
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By assuming symmetric trimming and normal distribution
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σ̂ =

[
1

φ−1 (1 − γ)

]
sT (6)

σ̂T = s∗T = 1.4826sT (7)

The function Φ is the distribution function of standard normal. The authors consid-
ered a maximum trimming of 25%, for framing this constant, beyond which loss of infor-
mation from the sample is high. Hence modified estimate of dispersion using trimmed
mean and the tuning constant are relevant and meaningful. It is interesting that this is
the same constant introduced by Hampel (1974) for Median Absolute Deviation (MAD)
and is equivalent to the trimmed mean of 25% for a symmetric trimming.
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If σ2 is the population variance, Mean Square Error (MSE) of its estimators based on
sample variance s2 and trimmed variance s2∗T are

MSE
(
s2
)

=

(
1

c24

)(
1 − c24

)
σ2 (8)

MSE
(
s2∗T
)

= (1.4826)2
(

1

c24

)(
1 − c24

)
σ2. (9)

The constant c4 is a function of sample size n only and same tables for control chart
parameters can be used to get these values.

c4 (n) =
Γ
[
n
2

]√
2

n−1
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[
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2

] . (10)

Relative Efficiency (RE) of the estimator based on variance of the trimmed mean is

RE =
MSE (s)

MSE
(
s∗T
) = 2.19810276. (11)

The RE is also influenced by the percentage of trimming, while estimating s∗T . So a
simulation study is conducted by generating samples of sizes n = 5, 8, 10 and 20 from
N(0, 1). Sample s.d(s) and this robust s.d (s∗T ) were calculated and 10, 000 runs were
simulated for each sample using SAS software. Variance of s and s∗T were calculated
across the runs and RE of s∗T were calculated. In order to calculate simulation error
of RE of s∗T , this was repeated 10 times and standard deviation of the 10 RE values
were calculated. The results of this simulation study are given in Table 1. It shows that
efficiency will also improve if sample size and trimming percentage are increased.

Table 1: Relative Efficiency of the modified robust estimator s∗T .

Sample size RE Simulation RE Simulation

n (trim 10%) Error (trim 20%) Error

5 0.47909 0.00522 0.59384 0.00801

8 0.49552 0.00584 0.64991 0.01054

10 0.59897 0.00642 0.72579 0.00975

20 0.60686 0.00647 0.76741 0.01223

This paper considered two phases of control charting procedure. Preliminary samples
are considered for constructing limits in Phase I. After framing the limits, values of
sample standard deviations (si) are plotted and if any si-values are outside the limits,
the chart is revised. Once the limits are constructed, it is used for phase II to control
the process.
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The Center Line (CL), Lower Control Limits (LCL) and Upper Control Limits (UCL)
of a Shewhart type dispersion chart are

CL = c4σ; LCL = c4σ − 3
√

1 − c24 = B5σ; UCL = c4σ + 3
√

1 − c24 = B6σ. (12)

When σ is estimated from the preliminary samples, average of subgroup standard
deviation si is used.

s =
∑m

i=1 si/m, where si =
(

1
n−1

∑n
j=1 (xij − x)2

)1/2
and an estimate of process

dispersion using it is σ̂ = s/c4.
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√
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)
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(
1 +

3

c4

√
1 − c24

)
s = B4s. (13)

When σ is estimated from the preliminary samples using average of the robust esti-
mator s∗T say, σ̂ = s∗T /c4 control limits are

CL = s∗T ; LCL = B3s∗T and UCL = B4s∗T (14)

As sample size is same, there is no change of control chart constants and table used for
classical control chart can be used here also. If trimmed standard deviation is directly
taken for framing limits, it will not cover process dispersion. The loss of information
due to trimming is covered by multiplying a tuning constant with standard deviation of
the trimmed data. This constant is selected in such a way that, it will compensate the
loss due to maximum allowable trimming.

In order to fix this tuning constant, a simulation study is conducted and validated
the effect multiplier 1.4826 on modified trimmed standard deviation to control process.
The constants 0.7803041 (10% trimming), 1.1881829 (20% trimming), 1.4826022 (25%
trimming) and 1.9069394 (30% trimming) are used as multipliers to develop control limits
and compared its performance with classical non-robust limits. Limits are verified based
on its efficiency to detect outlier with a minimum of false detection without disturbing
its robustness.

Figure 1 shows a comparison on positions of various UCL based on above four multi-
pliers named as UCL1, UCL2 ,UCL3 and UCL4 respectively, along with classical UCL,
for a particular trimming and for a fixed subgroup size, say n = 10. Limits are calcu-
lated for 20 random data sets, each contains 20 subgroups of size 10. Position of UCL3,
based on the multiplier 1.4826 provide the lowest UCL one can think about that covers
process dispersion without the loss of robustness, for all levels of trimming except for
10% trimming. When trimming is small the limits are coinciding with that of s-chart,
which is non-robust.



116 Sindhumol, Srinivasan, Gallo

Figure 1: Comparison of UCLs based on different multipliers for trimmed s.d along with
UCL of s-chart for 20 random data sets each contains 20 subgroups of size 10
each.

Table 2 contains average width of s-chart along with average width of control charts
calculated with various multipliers against four levels of trimming, calculated for 20
random data sets, each containing 20 subgroups of size 10. The trimmed s.d chart with
multiplier 1.90694 is close to the non-robust s-chart. It is clear that except for small
percentage of trimming, s∗T -chart with multiplier 1.4826 gives the maximum width that
can represents process dispersion without the loss of robustness. For small sample size,
maximum trimming one can think about is 10% and for large sample it is 25%. In such
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case, the tuning constant introduced by the authors, provide the most narrowed interval
one can think about that covers process dispersion as well as detection of outliers beyond
which reduces its robust nature.

Table 2: Comparison of average width of control charts with s-chart.

Average width of control charts

Multipliers 1 0.78034 1.18818 1.4826 1.90694

10% 1.387746 0.767212 1.168178 1.457642 1.874799

20% 1.387746 0.544989 0.829816 1.035436 1.331764

25% 1.387746 0.544989 0.829816 1.035436 1.331764

30% 1.387746 0.386639 0.588707 0.734583 0.944810

3 Performance of robust control chart

An empirical study based on Monte Carlo simulation is conducted for 1,000 runs using
SAS software and random samples are simulated from N(0, 1). The study considers
subgroup sizes of n = 10 and 20 and number of subgroups considered are 20 in each
case. Two levels of symmetric trimming are considered for each subgroup at 10% (r = 1)
and 20% (r = 2). Random subgroups generated from N(0, 1) are considered as data from
in-control state and sample standard deviations are calculated from it to test against
these control limits. Any value of the sample statistic lie outside the limits is considered
as a false-alarm. In order to study the effect of detection of outliers or assignable causes
of variation, two out-of-control situations are created, one is based on random samples
taken from N(0, 2) and the other is from random samples from N(0, 4).

A classic way of illustrating the effect of slight departure from normality is with the
contaminated, or mixed, normal distribution. Let X is a standard normal variable hav-
ing distribution function ϕ(x). Then for any constant K > 0, ϕ(x/K) is a normal
distribution with standard deviation K. Let ε be any constant, 0 ≤ ε ≤ 1. The con-
taminated normal distribution is H(x)) = (1 − ε)ϕ(x) + εϕ(x/K) which has mean 0 and
variance (1 − ε+ εK). Contamination is made for 40% of the subgroup so that 10% and
20% censoring will be meaningful for a contaminated subgroup. The mixture models
considered are 0.60N(0, 1)+0.40N(0, 2), and 0.60N(0, 1)+0.40N(0, 4). Also among the
20 subgroups, 5% subgroups are out of control and hence outlier models are fixed as 16
N(0, 1) and 4 N(0, 3) mixed and 16 N(0, 1) and 4 N(0, 5) mixed.
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Figure 2: Comparison of s-chart, s∗T -charts for 10% and 20% trimming for data from
N(0, 1).

Figure 2 shows a comparison of performance of s-chart with two other charts based
on s.d from trimmed data for two levels of trimming. Subgroup size n = 10 and number
subgroups taken is m = 20. When trimming is small, limits of s-chart and trimmed s.d
chart and are nearer and have lost its robust nature. When trimming is increased to
20%, width of the limits are lesser than the classical s-chart and more robust in nature.
Figure 3 shows charts performance in terms of outlier detection. The robust chart based
on standard deviation of 20% trimming is detecting more points compared to s-chart.

The Average Run Length (ARL) is evaluated as the average number of points that
must be plotted before a point indicated out-of-control signal. It is the reciprocal of the
probability that any point exceeds the control limits. When the process is in-control,
ARL of Shewharts-control chart is expected to be close to 370. A simulation study is
done to compare ARL for both in-control and out-of-control status. A sets of m = 20
subgroups consisting of n = 10 observations were generated from N(0, 1) distribution.
The control limits for the s-chart and the proposed s∗T -control chart were constructed.
After determining the control limits, random N(0, 1) subgroups of size n were generated.
The s statistic is computed for each subgroup and compared to the control limits of both
control charts. The number of subgroups required for the value of the s estimator to
exceed the control limits is recorded as a run length observation, RLi. For runs not
signaling by the 1, 000th subgroup, the run length was recorded as 1, 000. This process
is repeated 10, 000 times and the results of this simulation study are given in Table2.
The ARL0 is calculated as

ARL0 =
1

10000

10000∑
i=1

ARi. (15)
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Figure 3: Performance of s-chart and s∗T -charts for 10% and 20% trimming for N(0, 1)
data with outlier from N(0, 2).

The same procedure is used to compare for the out-of-control ARL. If the process
is out-of-control, its ARL1, to be small. The control limits for the ARL0 are based
on N(0, 1) distribution. The observations used to calculate the statistics s are from a
normal distribution with mean µ = 0 and standard deviation λσ, where λ representing
the size of the shift in the standard deviation. Example shows for λ = 2 and 4. Number
of samples required for the value of s estimator to exceed the control limits is recorded
as a run length observation, RLi. Process is simulated 10, 000 times and took average as
ARL1. Similarly, the study is conducted for the slight variations from normality, which
is for contaminated normal. The following table shows a comparison of ARL based on
simulation study.

Table 3 shows that among ARL1 of dispersion charts, s∗T -chart with 10% trimming is
larger than that of s-chart. Hence small percentage of trimming can be advisable even
for a controlled process. For out-of-control situations, ARL1 is less for s∗T -chart with
20% trimming than s-chart and hence this robust s∗T -chart is preferable.

4 Conclusion

This study gives a modification to standard deviation of trimmed data in a realistic
and more meaningful way by multiplying it with a suitable constant. This will improve
relative efficiency of the estimate of dispersion, and control its loss of information due
to trimming, while holding its robust nature. A simulation study shows that efficiency
will also improve if sample size and trimming percentage are increased. Moreover, the
strength of this constant is already proved by Hampel by multiplying it with MAD.

This paper also gives an application of this robust estimator of dispersion in statistical
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Table 3: ARL for sample size n = 10 and m = 20, with r = 1 trimming 10% and r = 2
trimming 20%.

Distributions s-chart s∗T
r = 1 r = 2

N(0, 1) 370 410 205

N(0, 1.5) 259 190.6 105

N(0, 2) 0.42 0.58 0.47

N(0, 4) 0.41 0.004 0.005

0.60N(0, 1) + 0.40N(0, 2) 3.02 4.26 0.62

0.60N(0, 1) + 0.40N(0, 4) 3.01 4.29 0.61

process control technique. Control limits are constructed and tested based on simulation
study. Charts performance in both in-control and out-of-control situations in terms of
detection of assignable causes or outlier is also carried out. A comparison of this chart for
two levels of trimming with classical s-chart is done. Moreover, performance is evaluated
based on both in-control and out-of-control ARL also. In all these situations, this robust
control chart performance is remarkable.
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