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Abstract

Shewhart control chart is the most popular and widely used Statistical process Control
tool to monitor process. It is developed under the assumption of independent and normally
distributed process. In order to control process mean and standard deviation, robust
estimator of these parameters can be better alternatives as charts based on that are more
resistant to moderate changes in process distribution. Modified Maximum Likelihood
Estimator (MMLE) for mean and standard deviation is a pair of statistics with good
robust properties. Authors introduced these measures to control charting process and
investigate the advantages of using it. A modification to mean based on MMLE and
its standard deviation are introduced to improve industrial process performance. Using
Monte Carlo simulation method, performance of this chart is compared with classical
control chart. Performance is also studied based on the Average Run Length.

Keywords: control chart, mean, standard deviation, modified maximum likelihood estimator,
average run length.

1. Introduction

Specifying the control limits is the most important step in designing a control chart. When
the limits are narrow, the risk of a point falling beyond the limits increases, and hence increase
the false indication that the process is out of control. If the limits are wider, the risk increases
the points falling within the limits, falsely indicating that the process is in control. The
presence of outliers tends to reduce the sensitivity of control-charting procedures because the
control limits become stretched so that the detection of the outliers themselves becomes more
difficult. Width of the control limits are also depends on the statistic used to construct the
limits. Hence the usage of some resistant statistics in constructing control limits can improve
the performance of charts in detection of assignable causes of variation as well as variation
due to the presence of outliers. Robustness depends not only on resistance of the statistical
tools to outliers but also on the purpose of the analysis.

The most common Shewhart type control chart to control a quality characteristic at its
target value in an industrial process, is a mean chart. In practice, the process parameters µ
and σ are usually unknown. Therefore, they must be estimated from preliminary subgroups
taken when the process is assumed to be in control and limits are constructed based on it
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in Phase I analysis. The resulting estimates and limits are used to monitor the location
of the process in Phase II. The x̄ chart is developed under the assumption that the data
collected from the process is independently and identically distributed normal distribution.
The quality of subgroup average is easily affected by the presence of extreme values. There are
many resistant statistics available in literature and some of them are experimented to control
industrial process. Langenberg and Iglewicz (1986) proposed control limits determined by
the trimmed mean of the subgroup means and the trimmed mean of the ranges. Rocke
(1989, 1992) proposed trimmed Mean and Inter Quartile Range chart and Median and Range
chart to control process mean. Schoonhoven et al (2011) have used Tatum estimator and
trimean value based on quantiles. Wu et al (2002) considered three alternative statistics
for the sample standard deviation, namely the median of the absolute deviation from the
median (MDM), the average absolute deviation from the median (ADM) and the median
of the average absolute deviation (MAD), and investigated their effect on x̄ control chart
performance. Omar Ahmed Abu-Shawiesh (2009) used the sample median, MD, to estimate
the process mean, µ, and MAD for dispersion σ. Jones-Farmer et al (2019) proposed a
rank-based Phase I location control chart. Figueiredo and Gomes (2009) have investigated
Bootstrap based median and range and total median and total range statistics to control
process mean. Maddahi et al (2011) presented a robust mean control chart based on M-
estimators in presence of outliers. Adekeye (2012), Adekeye and Azubuike (2012) modified
sample mean chart with standard deviation estimated using MAD and showed that the chart is
good even for non-normal process. Schoonhoven et al (2013) used trimean (TM) and Adaptive
Trimmed Standard deviation (ATS) to control process. This paper gives a modification to x̄
chart using MMLE to make the control limits robust. Nazir et al (2014a,b) gave step-by-step
procedure to develop a robust Shewhart location and dispersion control charts. Lagos-Álvarez
et al (2014) have used MMLE to estimate parameters of generalization of the symmetrical
linear regression models. Sindhumol and Srinivasan (2015) introduced dispersion chart based
on MMLE. Sindhumol et al (2016a,b) developed control charts for location and dispersion
based on trimmed mean and Modified Trimmed Standard Deviation (MTSD).

This paper presents robust location charts based on Modified Maximum Likelihood Estimator.
This location measure has a problem that the tails of distribution can dominate its value,
especially in presence of outliers. This problem is overcome by a modification to the estimator
giving less weight to the values in the tails and hence more attention to values near center.
This robust estimator is used to develop control limits and its performance is also compared
with classical mean chart.

2. Modified maximum likelihood estimators (MMLE)

Consider the normal distribution N(µ, σ) and let xT = (x1, x2, ..., xn) be a random sample
of size n taken on it. If z = (x(i) − µ)/σ, f(z) is the standard normal distribution based on
symmetric censored sample (x(i) for i = r+ 1, ..., n− r), with the likelihood function given as

L =
n!

2r!
σ−(n−2r)

[
n−r∏

i=r+1

f(z(i))

] [
F(z(r+1))

]r [
1− F(z(n−r))

]r
. (1)

Thus, the maximum likelihood equations are
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n

σ
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1

n
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[
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]}
= 0 (2)
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n

σ
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z2(i) − q
[
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= 0 (3)

where q = r/n; g1(z) = f(z)/F(z) and g2(z) = f(z)/[1 − F(z)]. The equations 2 and 3 do
not have explicit solutions and Cohen (1961) has developed a suitable iterative method for
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solving these equations. Tiku (1967) considered g(z) = f(z)/[1 − F(z)] = α + βz where
β = (g(b)−g(a))/(b−a) and α = g(z)−αβ, as g(z) over an interval a ≤ z ≤ b of finite length
lie close to the line. Tiku et al (1986) introduced Modified Maximum Likelihood Estimators
(MMLE) of mean and standard deviation of normal distribution as

µ̂MMLE = x̄MMLE =

∑n−r
i=r+1 x(i) + rβ(x(r+1) + x(n−r))

m
, and

σ̂MMLE = sMMLE =
B + (B2 + 4AC)1/2

2[A(A− 1)]1/2
.

(4)

where n =sample size, m = n − 2r + 2rβ, A = n − 2r, B = rα(x(n−r) − x(r+1)) and C =∑n−r
i=r+1(x(i) − x̄MMLE)2 + rβ[(x(r+1) − x̄MMLE)2 + (x(n−r) − x̄MMLE)2].

He has derived values of α and β for various n and r and identified the MMLE estimators as
robust estimators for mean µ and standard deviation σ. However, when symmetric censoring
r = 0, these estimates are reduced to MLE. He studied its robust nature and showed that
MMLE (30% censoring) is preferable to sample mean and standard deviation for symmetric
distributions with infinite mean and variance and MMLE (10% censoring) is preferable to
extreme short tailed symmetric distributions. He introduced a link between censoring and
robustness also. For Type II censored normal samples, the MMLEs the pair (µ̂ and σ̂) are
all most equally efficient as the MLEs and BLUEs. More than that, the MMLEs are jointly
more efficient than trimmed estimators, Huber’s and Humpel’s estimators.

3. Robust location control charts

If sample mean and standard deviation are used to estimate process means µ and process
dispersion σ, based on k preliminary samples each of size n, control limits of chart namely
Center Line (CL), Upper Control Limit (LCL) and Lower Control Limits (LCL) are obtained
as follows by calculating average of m sample means and sample standard deviations.

CL = x; UCL = x+ 3
s

c4
√
n

= x+A3s; LCL = x− 3
s

c4
√
n

= x−A3s. (5)

If sample MMLE is used to estimate µ and standard deviation s is used to estimate process
dispersion σ, control limits are

CL = ¯̄xMMLE; UCL = ¯̄xMMLE +A3s̄; LCL = ¯̄xMMLE −A3s̄. (6)

If sample MMLE and standard deviation of MMLE are used to estimate process µ and dis-
persion σ, control limits are

CL = ¯̄xMMLE;

UCL = ¯̄xMMLE + 3
s̄MMLE√
m

= ¯̄xMMLE +A4s̄MMLE;

LCL = ¯̄xMMLE − 3
s̄MMLE√
m

= ¯̄xMMLE +A4s̄MMLE.

(7)

Values of constant A4 are calculated and are given in Table 1 for various sample sizes n, r,
m, α and β. This table is presented as an extension of Table B.1 of Tiku et al (1986), where
values of α and β for various n and r, were given, for the convenience of the user.

The comparison of control limits for performance evaluation is carried out based on twenty k
simulated samples of size ten (n) each from N(0, 1) with r = 0, 1 and 2. Limits are constructed
repeatedly for such simulated data and average width of control limits is given in Table 2.
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Table 1: Control chart parameters for MMLE-chart (Part 1)

n r α β m A4 n r α β m A4

5 1 0.754 0.8108 4.6216 1.395485 21 1 0.6104 0.8915 20.783 0.658062
6 1 0.7303 0.8273 5.6546 1.261596 21 2 0.6826 0.8427 20.3708 0.664687
7 1 0.7118 0.8391 6.6782 1.160891 21 3 0.7166 0.8148 19.8888 0.672693
7 2 0.7867 0.7508 6.072 1.217462 21 4 0.7411 0.7903 19.3224 0.682481
8 1 0.6968 0.8481 7.6962 1.081392 21 5 0.76 0.7672 18.672 0.694266
8 2 0.7719 0.768 7.072 1.128107 21 6 0.7751 0.7445 17.934 0.708407
9 1 0.6844 0.8552 7.7104 1.080396 22 1 0.607 0.893 21.786 0.642736
9 2 0.7594 0.7811 8.1244 1.052508 22 2 0.679 0.845 21.38 0.64881
9 3 0.7959 0.7242 7.3452 1.106928 22 3 0.7127 0.818 20.908 0.656092

10 1 0.6737 0.861 9.722 0.962151 22 4 0.737 0.7944 20.3552 0.664942
10 2 0.7485 0.7915 9.166 0.990903 22 5 0.7559 0.7722 19.722 0.675532
10 3 0.7855 0.7405 8.443 1.032459 22 6 0.7711 0.7506 19.0072 0.688117
11 1 0.6645 0.8658 10.7316 0.915775 22 7 0.7832 0.7289 18.2046 0.703122
11 2 0.7391 0.8001 10.2004 0.939318 23 1 0.6038 0.8944 22.7888 0.628435
11 3 0.7762 0.7535 9.521 0.972255 23 2 0.6756 0.8472 22.3888 0.634024
12 1 0.6564 0.87 11.74 0.875563 23 3 0.709 0.8209 21.9254 0.640689
12 2 0.7307 0.8072 11.2288 0.895271 23 4 0.7331 0.7981 21.3848 0.648737
12 3 0.7677 0.7643 10.5858 0.92206 23 5 0.752 0.7768 20.768 0.6583
12 4 0.7919 0.723 9.784 0.959098 23 6 0.7672 0.7561 20.0732 0.669596
13 1 0.6492 0.8736 12.7472 0.84026 23 7 0.7796 0.7354 19.2956 0.682955
13 2 0.7232 0.8133 12.2532 0.857031 24 1 0.6008 0.8957 23.7914 0.615051
13 3 0.7599 0.7733 11.6398 0.879323 24 2 0.6724 0.8492 23.3968 0.620216
13 4 0.7847 0.7354 10.8832 0.909375 24 3 0.7055 0.8236 22.9416 0.626339
14 1 0.6428 0.8767 13.7534 0.80894 24 4 0.7295 0.8016 22.4128 0.633685
14 2 0.7165 0.8186 13.2744 0.823406 24 5 0.7483 0.781 21.81 0.642382
14 3 0.7529 0.7809 12.6854 0.842305 24 6 0.7636 0.7611 21.1332 0.652587
14 4 0.7779 0.7459 11.9672 0.867211 24 7 0.776 0.7413 20.3782 0.664566
15 1 0.6369 0.8795 14.759 0.780895 25 1 0.5979 0.8968 24.7936 0.602492
15 2 0.7103 0.8233 14.2932 0.793518 25 2 0.6694 0.851 24.404 0.607282
15 3 0.7464 0.7876 13.7256 0.809759 25 3 0.7023 0.8261 23.9566 0.612927
15 4 0.7715 0.7518 13.0144 0.83159 25 4 0.726 0.8048 23.4384 0.619665
15 5 0.7896 0.7223 12.223 0.858089 25 5 0.7448 0.7849 22.849 0.627607
16 1 0.6316 0.882 15.764 0.755593 25 6 0.76 0.7657 22.1884 0.636881
16 2 0.7048 0.8274 15.3096 0.766724 25 7 0.7726 0.7468 21.4552 0.647672
16 3 0.7405 0.7935 14.761 0.780842 25 8 0.7829 0.7278 20.6448 0.660261
16 4 0.7656 0.7626 14.1008 0.798913 26 1 0.5952 0.8968 25.7936 0.590698
16 5 0.784 0.7324 13.324 0.821872 26 2 0.6666 0.851 25.404 0.59521
17 1 0.6267 0.8843 16.7686 0.73261 26 3 0.6991 0.8261 24.9566 0.600521
17 2 0.6996 0.8311 16.3244 0.742511 26 4 0.7227 0.8048 24.4384 0.606855
17 3 0.735 0.7987 15.7922 0.754918 26 5 0.7414 0.7849 23.849 0.614308
17 4 0.76 0.7695 15.156 0.7706 26 6 0.7566 0.7657 23.1884 0.622997
17 5 0.7788 0.7411 14.411 0.790268 26 7 0.7693 0.7468 22.4552 0.633086
18 1 0.6221 0.8863 17.7726 0.711616 26 8 0.7798 0.7278 21.6448 0.644829
18 2 0.6949 0.8344 17.3376 0.720488 27 1 0.5926 0.899 26.798 0.579522
18 3 0.7299 0.8033 16.8198 0.731494 27 2 0.6638 0.8544 26.4176 0.58368
18 4 0.7548 0.7755 16.204 0.745264 27 3 0.6962 0.8307 25.9842 0.588527
18 5 0.7737 0.7488 15.488 0.762296 27 4 0.7196 0.8105 25.484 0.594275
19 1 0.618 0.8882 18.7764 0.692333 27 5 0.7381 0.7918 24.918 0.600986
19 2 0.6905 0.8374 18.3496 0.700338 27 6 0.7534 0.774 24.288 0.608731
19 3 0.7252 0.8075 17.845 0.710171 27 7 0.7661 0.7564 23.5896 0.617676
19 4 0.75 0.781 17.248 0.722357 27 8 0.7767 0.7389 22.8224 0.627972
19 5 0.7689 0.7556 16.556 0.737299 28 1 0.5902 0.9 27.8 0.568982
19 6 0.7836 0.7302 15.7624 0.755632 28 2 0.6613 0.856 27.424 0.57287
20 1 0.6141 0.8899 19.7798 0.674544 28 3 0.6933 0.8328 26.9968 0.577384
20 2 0.6864 0.8401 19.3604 0.681811 28 4 0.7166 0.8131 26.5048 0.582719
20 3 0.7208 0.8113 18.8678 0.690654 28 5 0.735 0.795 25.95 0.588915
20 4 0.7454 0.7859 18.2872 0.701532 28 6 0.7502 0.7776 25.3312 0.596065
20 5 0.7644 0.7617 17.617 0.714752 28 7 0.763 0.7607 24.6498 0.604247
20 6 0.7793 0.7378 16.8536 0.73076 28 8 0.7737 0.7438 23.9008 0.613642
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Control chart parameters for MMLE-chart (Part 2)

n r α β m A4 n r α β m A4

29 1 0.5878 0.901 28.802 0.558998 30 1 0.5856 0.9019 29.8038 0.549522
29 2 0.6588 0.8574 28.4296 0.562647 30 2 0.6564 0.8588 29.4352 0.552952
29 3 0.6906 0.8347 28.0082 0.566864 30 3 0.688 0.8365 29.019 0.556904
29 4 0.7137 0.8155 27.524 0.571828 30 4 0.711 0.8178 28.5424 0.561534
29 5 0.7321 0.7979 26.979 0.577575 30 5 0.7292 0.8006 28.006 0.566886
29 6 0.7472 0.7811 26.3732 0.584171 30 6 0.7443 0.7843 27.4116 0.572999
29 7 0.76 0.7647 25.7058 0.591706 30 7 0.7571 0.7684 26.7576 0.57996
29 8 0.7708 0.7484 24.9744 0.600307 30 8 0.768 0.7527 26.0432 0.58786
29 9 0.78 0.7321 24.1778 0.610117 30 9 0.7772 0.737 25.266 0.596833

Average width of the control limits based on MMLE is larger than that of classical control
charts and the width increases further for r = 2. Though the pair of mean and s.d based on
MMLE is robust, it cannot be directly applied to an industrial process.

Table 2: Average width of the charts.

Charts x̄− s x̄− sMMLE x̄MMLE − s x̄MMLE − sMMLE

r = 0 r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

UCL 0.937939 0.953736 0.963239 0.926557 0.921751 0.942352 0.947051
LCL -0.97035 -0.98615 -0.99565 -0.98173 -0.98654 -0.99753 -1.01184

Width 1.90829 1.939882 1.958888 1.908291 1.908288 1.939883 1.958888

3.1. Modifications of MMLE for control chart

When MMLE is introduced to industrial applications, it is noticed that as censoring percent-
age increases, width of the chart also increases and presence of an outlier makes limits even
wider than non-robust mean chart. This is basically due to the large weightage given to the
extreme observations, in order to overcome the effect of censoring. In order to reduce this
effect, authors considered reduced weightage to extreme observations and equal weightage
to other sample values. This reduction in weights of extreme observations positively affect
sample dispersion and hence provide an overall improvement in width of control limits as
well as the performance of chart. This improvement in limits of the mean chart, especially
in phase I analysis, when some extreme observations are present and effect of this change is
also reflected in phase II analysis too. Thus the modified MMLE are given by;

µ̂ = x̄∗ =

∑n−r
i=r+1 x(i) − rβ(x(r+1) + x(n−r))

m
, and

σ̂ = s∗ =
B + (B2 + 4AC)1/2

2[A(A− 1)]1/2
.

(8)

where n = sample size, m = n − 2r + 2rβ, A = n − 2r, B = rα(xn−r − xr+1) and C =∑n−r
i=r+1(x(i) − x̄∗)2 − rβ[(x(r+1) − x̄∗)2 + (x(n−r) − x̄∗)2].

The performance evaluation for the modified MMLE is carried out through a simulation study
conducted by generating samples of sizes n = 10 and 20 from N(0, 1). Sample mean x and
robust x∗ were calculated for 10,000 runs simulated for each sample using SAS software.
Variance of x and x∗ were calculated across the runs and Relative Efficiency (RE) of x∗ with
x were calculated using Mean Square Error (MSE). The results of the simulation study as
presented in Table 3 showed that efficiency will improve if sample size and censoring percentage
are increased.
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Table 3: Relative efficiency of the modified robust estimator x∗.

Sample size n RE (10%) Simulation Error RE (20%) Simulation Error

10 2.15675 0.01445 0.89853 0.00598
20 1.41354 0.00709 2.046963 0.01608

If x∗ is used to estimate µ and s is used to estimate process dispersion σ, control limits are

CL = x
∗
; UCL = x

∗
+A3s; LCL = x

∗ −A3s. (9)

If process standard is also estimated using s∗, limits are

CL = x
∗
; UCL = x

∗
+A4s

∗; LCL = x
∗ −A4s

∗. (10)

Table 4 gives comparison of charts based on its width using data simulated from N(0, 1) to
study the effect without contamination. Charts based on MMLE and its standard deviation
as well as modified mean and its standard deviation for censoring levels r = 1 and r = 2, for
subgroup size n = 10 and number of subgroup k = 20 are compared with classical mean and
its standard deviation chart. When compared with charts x− s and xMMLE − sMMLE, x∗ − s∗
chart has a smaller width which helps an earlier detection of assignable causes. Width of the
chart is also depended on what measure is used to estimate process dispersion.

Table 4: Average width of control charts for n = 10, k = 20.

Charts x̄− s x̄− s∗ x̄− sMMLE x̄MMLE − s x̄MMLE − sMMLE x̄∗ − s x̄∗ − s∗
UCL 0.91706 0.57536 0.95252 0.89474 0.93019 0.89609 0.55439
LCL -0.93416 -0.59247 -0.96962 -0.95648 -0.99194 -0.95513 -0.61344

(r = 1) 1.85121 1.16783 1.92214 1.85121 1.92214 1.85121 1.16783
UCL 0.91706 0.36633 1.01029 0.87055 0.96379 0.87055 0.31983
LCL -0.93416 -0.38344 -1.02739 -0.98066 -1.07389 -0.98066 -0.42994

(r = 2) 1.851214 0.74977 2.03768 1.85121 2.03768 1.85121 0.74977

Further, in order to study the robust nature of x∗ − s∗ chart control limits, it is compared
with limits of x− s and xMMLE − sMMLE charts, in presence of contaminated data. Figure 1
shows that chart based on MMLE has the largest width and it fails to detect variation in the
data due to assignable causes. Though LCL of x∗ − s∗ and x− s charts coincide and detect
sample 3 and 4, UCL of x∗− s∗ chart detects sample 18 and 20 also. Even though Tiku et al
(1986) proved MMLE and its s.d are a pair of robust measures, it shows poor performance

in control charting procedure than classical mean chart. The modified measures give robust
control limits.

Performance of x∗ − s∗ charts in the presence of outliers is studied based on simulated data
by taking 20 subgroups each of sizes n = 10 and n = 20 and outliers are fixed based on mean
slippage and variance slippage methods. Simulated data from N(0, 1) is used for calculating
control limits and two levels of censoring, 10% and 20% are considered. Outliers for mean
slippage and variance slippage are considered from N(1, 1), N(2, 1), N(0, 2) and N(1, 2). Four
control charts namely x − s, x − s∗, x∗ − s and x∗ − s∗ are considered. The study showed
that when outliers are presented from distributions having larger mean or standard deviation,
almost all charts are detecting. Even when small shifts occur, this modified robust mean
chart helps an early detection.

Figure 2 shows a comparison of these charts with classical mean charts. Among the four
charts, three of them are based on modified mean or modified s.d. Charts based on modified
mean are small in width and are overlapped while charts based on sample mean are wider.
Due to the small width, robust limits help an early detection of shifts.
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Figure 1: Comparison of contaminated control charts for n = 10, k = 20 and r = 1.

Figure 3 and 4 made comparison of charts based on outlier detection, where outliers are fixed
using location and dispersion slippage methods respectively. Charts are developed based on
20 subgroups each of size 10 with 20% censoring. All the three charts based on modified
mean and s.d are compared with classical mean chart. When location or dispersion is slightly
shifted, limits of x− s∗ and x∗ − s∗ charts which are small in width and are overlapping and
showed same performance. Charts x− s and x∗ − s are wider and overlapping.

3.2. Performance evaluation based on average run length (ARL)

Performance of a control chart can also be assessed based on Average Run Length. It is defined
as the reciprocal of the probability that any point exceeds the control limits. If the process
is in-control, the in-control ARL0, should be large and if the process is out-of-control, ARL1

should be very small. The number of subgroups required for the value of the x̄ estimator to
exceed the control limits was recorded as a run length observation, Run Length. For runs
not signaling by the 1000th subgroup, the run length was recorded as 1000. This process
is repeated 10,000 times and the results of this simulation study are given in Table 5. The

ARL0 was calculated as ARL0 =
∑10000

i=1 ARi

10000

Though ARL for the in-controlled data is small due to the effect of censoring it reduces rapidly
for out-of-control data. When a small shift occurs x∗−s∗ chart performs better than classical
mean chart.

3.3. Performance based on operating characteristic (OC) curve

The ability of the chart to detect process shift in the quality level is the power of the control
chart. It is accessed by Operating Characteristic curve which displays probability of Type II
error called β-risk. The OC curve of the x̄-chart for Phase II analysis is studied here. The
OC function of x̄-chart, is the probability β of not detecting the shift in the mean on the first
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Figure 2: Comparison of N(2, 1) contaminated mean control charts, for n = 10, k = 20 and
r = 1.

subsequent sample taken after the shift has happened. If the mean in the in-control state is
µ0 and the shift is µ1 = µ0 + sσ, β-risk is defined as

β − risk = P (LCL ≤ x̄ ≤ UCL|µ = µ1) = φ(3− s
√
n)− φ(−3− s

√
n). (11)

Here φ is the distribution function of standard normal. To plot the OC curve for the chart,
plot the β-risk against the magnitude of the shift which is expressed in standard deviation
units for various sample sizes n. Process s.d is considered to be known or to be estimated
before considering β-risk. Smaller probability shows that higher the power of the control
chart to correctly detect. Steeper the curves show better probability of detection of shift in
the process quality.

Figures 5 and 6 show OC curves of the charts x̄− s, x̄− s∗, x̄∗ − s and x̄∗ − s∗ for r = 1 and
r = 2 respectively. The smallest β-risk and bigger slope are observed for x̄ − s∗ and x̄∗ − s∗

Table 5: ARL for sample size n = 10 and m = 20

Charts x− s x̄− s∗ x̄∗ − s x̄∗ − s∗
Distributions r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

N(0, 1) 329.043 88.397 286.470 331.862 331.624 88.563 285.471
N(0, 2) 6.2704 1.6294 0.6712 6.2626 6.2494 1.6328 0.6692
N(1, 1) 0.7922 0.1186 0.024 0.7504 0.7646 0.11 0.0218
N(1, 2) 0.9182 0.3236 0.1426 0.8906 0.9014 0.3152 0.142
N(2, 1) 0.0002 0 0 0.0002 0.0002 0 0
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Figure 3: Comparison of N(1, 1) contaminated mean control charts, for n = 10, k = 20 and
r = 2.

charts.

4. Conclusions

The MMLE has the advantage of censoring extreme observations. When MMLE is applied to
industrial process to control process mean, width of the control limits is larger than that of
sample mean chart. This happens due to the high weightage given to the remaining extreme
observations for compensating the effect of censoring the most extreme values. In order to
make this robust estimator suitable to industrial process, authors have made a modification
to it. Due to this modification, extreme values get lesser weight while equal weightage is
given to all other observations. Corresponding corrections are made to its s.d also. Relative
efficiency of this modified estimator for location and its standard error are calculated.

The chart based on MMLE is wider and chart after the modification to MMLE (x̄∗ − s∗) is
smaller than classical mean chart. This small width of modified limits in Phase I analysis is
robust to the presence of assignable causes and helps an early detection of assignable causes
in Phase II analysis of Shewhart location control charts.

Four different charts say, x̄− s∗, x̄∗ − s and x̄∗ − s∗ including classical mean charts for Phase
I analysis are considered for the study. When this x̄∗ and s∗ are used to construct limits, it
reduces the width of the limits so that even for small shift an early detection of assignable
causes in Phase II analysis is possible.Performance of this modified robust control chart in
detecting outliers in presence of contaminated samples is better, and study on ARL and OC
also support the results.
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Figure 4: Comparison of N(0, 2) contaminated mean control charts, for n = 10, k = 20 and
r = 2.
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Figure 5: Operating curves of the mean charts and MMLE charts (r = 1).
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Figure 6: Operating curves of the mean charts and MMLE charts (r = 2).

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful comments and
suggestions. This work was financially supported by 2017 funds of the University of Naples -
L’Orientale (I).

References

Omar Ahmed Abu-Shawiesh M (2009). “A Control Chart Based on Robust Estimators for
Monitoring the Process Mean of a Quality Characteristic”. International Journal of Quality
Reliability Management 26(5):480-496.

Adekeye KS (2012). “Modified Simple Robust Control Chart Based on Median Absolute
Deviation”. International Journal of Statistics and Probability 1(2):91-95.

Adekeye KS, Azubuike PI (2012). “Derivation of the Limits for Control Chart Using the
Median Absolute Deviation for Monitoring Non-Normal Process”. Journal of Mathematics
and Statistics 8(1):37-41.

Cohen AC (1961). “Tables of Maximum Likelihood Estimates; Singly Censored Samples”.
Technometrics 3(4):535-541.

Figueiredo F, Gomes MI (2009). “Monitoring Industrial Processes with Robust Control
Charts”. REVSTAT-Statistical Journal 7(2):151-170.

Jones-Farmer LA, Jordan V, Champ CW (2009). “Distribution-Free Phase I Control Charts
for Subgroup Location”. Journal of Quality Technology 41(3):304–.



12 Monitoring Industrial Process
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