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Abstract

This study attempts to advance corpus-based exploration of
sound iconicity, i.e. the existence of a non-arbitrary relation-
ship between forms and meanings in language. We examine a
number of phonesthemes, phonetic groupings proposed to be
meaningful in the literature, with the aim of developing ways
to validate their existence and their semantic content. Our
first experiment is a replication of Otis and Sagi (2008), who
showed that sets of words containing phonesthemes are more
semantically related to each other than sets of random words.
We augment their results using the British National Corpus and
the Semantic Vectors package for building a distributional se-
mantic model. Our second experiment shows how the semantic
content of at least some phonesthemes can be identified auto-
matically using WordNet, thereby further reducing the room
for intuitive judgments in this controversial field.

Keywords: Iconicity; Phonesthemes; Corpus analysis; Distri-
butional Semantics; WordNet.

Introduction

The claim that the relationship between forms and meanings
in language is not always arbitrary is controversial. How-
ever, evidence for non-arbitrary relationships comes at mul-
tiple levels of language, from phonology to syntax (Perniss,
Thompson, & Vigliocco, 2010). Here we focus on the pho-
netic level and investigate the association of particular sounds
with aspects of word meaning. Such sound iconicity has been
described in a variety of non-Indo-European languages (see
the studies in Hinton, Nichols and Ohala Hinton, Nichols,
& Ohala, 2006b) and its existence in English suggested by
a number of authors (Firth, 1930; Marchand, 1969), and ex-
ploited in commercial settings (Shrum & Lowrey, 2007).
Phonesthemes (a technical term for meaningful sound pat-
terns) are sub-morphemic units that play a role of morphemes
but have been traditionally distinguished from them by being
non-compositional (but see Rhodes Rhodes, 2006 for an op-
posite view). The most oft-cited example is the English phon-
estheme g/ which occurs in a large number of words related to
light or vision (glitter, glisten, glow, gleam, glare, glint, etc.).
Once the phonestheme is taken out, the remainder of the word
is not a morpheme (-itter, -isten, -ow etc.) and one does not
attach g/ to other words to make them light-related. Still, the
extent and the nature of this phenomenon is not clear.
Traditionally, the evidence for the existence of phones-
themes and their proposed meaning consisted in listing a
number of words that share a given sound and attempting
to find the semantic core that unites them. Popular expla-

nations for the phenomenon would rest on the intuited as-
sociation between sound production and meaning. For ex-
ample, Reid (1967) states that “The explosive nature of the
letter b is intensified when it is combined with / before the
breath is released. Consequently words beginning with bl are
found generally to indicate a ’bursting-out’ or the resultant
swelling or expansion” (p. 10). More recent accounts view
them rather as a matter of statistical clustering. According to
such “snowballing effect” theory, a group of phonemes in re-
lated words (for example, by common etymology) becomes
over time associated with the meaning of these words and
given the right conditions starts to attract other words with
the same phoneme into a cluster, through semantic change or
influencing the creation of new words (Blust, 2003; Hinton,
Nichols, & Ohala, 2006a).!

Dissociating these competing explanations would require
a combination of historical and cross-linguistic research but,
arguably, there is a wealth of more basic questions that need
to be addressed first. The nature of iconicity is such that it is
easy to see the connection between form and meaning once
we are aware of both elements but such intuition is not al-
ways a reliable guide for discovering the connections. Just as
it is difficult to interpret an iconic sign from American Sign
Language when its meaning is unknown (Bellugi & Klima,
1976), we might miss the connection that is in fact present.
On the other hand, we might over-estimate the connection
by listing only the light-related gl-words and forgetting the
amount of gl-words that have nothing to do with light (glide,
glucose, globe, glove, etc.). In other words, if we want to val-
idate the existence of phonesthemes or explain their origin,
we need to apply more falsifiable and unbiased methods in all
stages of investigation: identifying them in a given language,
quantifying their scope and establishing their meaning.

So far, the reality of phonesthemes has been demonstrated
in behavioral experiments (Bergen, 2004; Hutchins, 1998)
and corpus studies (Drellishak, 2006; Otis & Sagi, 2008). Our
aim is to contribute to the second current of this research. We
believe that this is a valuable way of objectively addressing
large-scale linguistic phenomena that can refine our under-
standing of sound iconicity and lead to further testable hy-

I'This is not to say that there are no universal sound features un-
derlying certain cases of sound iconicity, such as words for small
and large objects usually associated with high and low acoustic fre-
quency respectively (Ohala, 1994).
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potheses with respect to its cognitive underpinnings.

Otis and Sagi (2008) conducted the first corpus-based anal-
ysis of phonesthemes. They examined 47 groups of words
containing phonesthemes using Project Gutenberg texts and
a method for calculating word similarity based on Latent
Semantic Analysis (LSA), in particular its Infomap? variety
(Schiitze, 1997). The analysis performed by Otis and Sagi
showed that semantic relatedness of clusters of words that
share a phonestheme is higher than that of clusters composed
of randomly chosen words. This method, therefore, can be
used to examine the validity of conjectured phonesthemes.
However, as the authors admit, it “does not identify what
specific semantic content is carried by the identified phon-
estheme” (p. 68). Our first aim is replicating the study of Otis
and Sagi using (1) a more recent and balanced corpus — the
British National Corpus (BNC), and (2) a newer and more
versatile and efficient tool for calculating semantic related-
ness, Semantic Vectors® (Widdows & Cohen, 2010).

Our second aim is attempting to develop a method for au-
tomatically identifying the semantic content associated with
a particular phonestheme—a task that, to our knowledge, has
not previously been addressed in the literature. Otis and Sagi
(2008) suggest that methods designed to identify the topic of
a given text could be used to that end. We think, however, that
a more straightforward method lies in analogy with the task
of unsupervised ontology acquisition: placing a word within a
hierarchy of concepts based on its semantic relationship with
the rest of the words in the hierarchy: for example, pear be-
ing placed close to apple and banana under fruit. In the case
of phonesthemes, it is conceivable that a group of gl words
would be assigned a vision-related higher class. Whether this
can be done automatically and applied to a variety of phones-
themes is one of the questions we pose in this study.

In sum, our hypotheses are the following:

Hypothesis 1: Words that share a phonestheme are on av-
erage more semantically related than random words.

Hypothesis 2: The core semantic import conjectured in
the literature for a phonestheme can be derived automatically
from a set of phonestheme-bearing words.

Experiment 1: Semantic Relatedness
Methods

To explore our Hypothesis 1, we used the British National
Corpus (Burnard, 2007), a 100 million word collection of
written and spoken English language compiled from a wide
variety of sources and genres. We pre-processed the entire
corpus using the Natural Language Toolkit (NLTK) (Bird,
Klein, & Loper, 2009). In particular, we used NLTK to ex-
tract the content words in the corpus (nouns, adjectives, and
lexical verbs) and to lemmatize them, i.e. to reduce a family
of inflected words (such as walk, walks, walked, walking) to a
single word type or lemma (e.g. walk). This resulted in a sub-
corpus of about 43 million words, which we used as input to

zFreely available at nttp://infomap-nlp.sourceforge.net.
3Freely available at nttp://code.google.com/p/semanticvectors/.

construct a distributional semantic model with the Semantic
Vectors package (Widdows & Cohen, 2010).

Semantic Vectors allows us to use a corpus to build a
high-dimensional vector space where words are represented
as vectors that record their frequency of co-occurrence with
other words or other documents in the corpus. We can then
use well-defined methods to measure how similar the mean-
ings of two words are, such as computing the cosine of the
angle formed by their corresponding vectors. As Otis and
Sagi (2008) indicated in their pioneering corpus study, this
methodology can be of great value to investigate the claims
behind phonesthemes in an objective, data-driven way, since
we can use the distributional model to test whether words
sharing a hypothesized phonestheme exhibit higher semantic
similarity than random words.

Like Otis and Sagi, we built a ferm-term model where each
word vector records the co-occurrence of that word with other
words in the context (rather than recording occurrence in par-
ticular documents like LSA), but unlike them, who used the
traditional singular value decomposition method for reducing
the dimensions in the matrix, we used Random Projection, a
more computationally efficient algorithm.* We experimented
with the settings of two parameters in the Semantic Vectors
package: the minimum frequency of the word types consid-
ered for building the model (as we may not be able to con-
struct reliable distributional semantic representations for low
frequency words) and the window size, i.e. the context win-
dow of n words to left and right of the target word where the
model looks for co-occurrences of other words. McDonald
and Ramscar (2001) claim that “the best fit to psychological
data is typically achieved with word vectors constructed us-
ing context window sizes between 2 and +10 words.” Otis
and Sagi used n = 15, which is the default setting in Infomap.

We focused on the 22 prefix phonesthemes conjectured by
Hutchins (1998). Our statistical analysis followed the pro-
cedure proposed by Otis and Sagi (2008). For each phones-
theme, we first extracted all the vectors of the phonestheme-
bearing word types in our distributional semantic model.> We
shall refer to the resulting set of words (and vectors) as a
phonestheme cluster. We then performed two Monte Carlo
analyses. In the first analysis, we computed the average se-
mantic similarity of each phonestheme cluster by forming
1000 random pairs and averaging the semantic distance ob-
tained. In addition, we did the same for similarly-sized clus-
ters of random words and performed an independent sam-
ples t-test for the resulting two groups of values. In the sec-
ond analysis we took 50 random pairs within each phones-
theme cluster and a corresponding group of pairs of random
words and run 100 independent sample t-tests noting whether
the mean of phonestheme cluster distances was significantly
higher than the distances obtained for pairs of random words
(with o = 0.05). Based on the binomial distribution, we

4See Sahlgren (2005) and Widdows and Cohen (2010) for a com-
parison of these methods.

5Since we are dealing with a written corpus, this is done on the
basis of an orthographic match with the phonetic grouping.
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judged the number of significant t-tests as higher than 15 to
lend statistical support to our Hypothesis 1. We performed
the procedure 5 times and took the mean to be the final result.

We used the results obtained with the g/ phonestheme clus-
ter (which obtained the highest statistical support in the Otis
and Sagi study) to optimize the minimum frequency and
the window size parameters of our distributional semantic
model. The model produced the most qualitatively sensible
and most statistically stable results when setting the minimum
frequency to 100 and the window size to 10. This resulted in
a model containing a set of 22292 vectors. This vector space
was used in all subsequent parts of our study.

Results

The results obtained with our parameter optimizing test on
the gl phonestheme showed that the semantic relatedness of
the words in the g/ cluster was significantly higher than that
of clusters of random words, as measured by our t-test pro-
cedure. On average, 26.4 t-tests produced a significant result
(recall that the threshold of significance of the binomial test
was for at least 15 out 100 t-tests to turn out as significant).
We used the same vector space (with the parameters fixed)
to analyze the remaining 21 prefix phonesthemes. The results
obtained are reported in Table 1. For each phonestheme, the
table shows the number of word types in the phonestheme
cluster (# Tokens), the average degree of semantic related-
ness amongst those words (Sim) calculated according to our
first Monte Carlo analysis, the number of significant t-tests
(# Sig) calculated according to our second Monte Carlo anal-
ysis, and the mean effect size (Effect) of these t-tests. As
can be seen, the model did not only confirm the semantic
similarity of the words in the g/ phonestheme (for which it
had been optimized), but produced significant results for 16
different prefix phonesthemes out of the 22 considered. The

Table 1: Phonestheme semantic relatedness results

[ Prefix [ #Tokens Sim #Sig  Effect |
bl- 105 0.4607 56.8 0.2845
cl- 156 04295 294 0.2570
cr- 197 03921 7.40 0.2327
dr- 99 0.4504 63.6 0.2849
fl- 137 04340 342 0.2536
gr- 197 04050 252 0.2617
sc-/sk- 167 0.4031 10.2 0.2443
scr- 32 05174 68.4 0.3093
sl- 83 04275 424 0.2734
Sm- 42 04803 514 0.2817
sn- 40 04650 522 0.2909
sp- 161 04127 144 0.2392
spl- 11 0.5224 59.0 0.2723
spr- 24 0.3950 4.80 0.2373
squ- 24 04916 67.0 0.3205
St- 298  0.4307 25.0 0.2465
str- 89 04525 61.8 0.2899
SW- 67 05138 91.2 0.3396
tr- 249  0.3912  5.80 0.2318
tw- 2204304 174 0.2408
wr- 38 0.5155 90.6 0.3915

average semantic relatedness of phonestheme clusters (M =
0.446,5D = 0.044) was highly correlated with the number of
significant t-tests (r = 0.95, p < 0.0001) and was furthermore
significantly higher than the average semantic relatedness of
random words clusters (M = 0.397,SD = 0.018), as shown
by an independent samples t-test ((42) = 4.83, p < 0.0001).
In line with the findings of Otis and Sagi (2008), we were
thus able to obtain support for Hypothesis 1 for 16 conjec-
tured phonestheme prefixes. Using the BNC — a more gen-
eral, balanced, and modern corpus of English than Project
Gutenberg — our study yielded higher support for the hypothe-
sis than Otis and Sagi’s previous study, which had found only
12 phonestheme prefixes as reaching statistical significance.

Experiment 2: Phonestheme Cluster Labeling
Methods

After establishing significant differences between the seman-
tic relatedness scores for phonestheme word clusters and
clusters of random words, we turned to our second experi-
ment, whose aim is to investigate possible methods to auto-
matically detect the core semantic content catried by a phon-
estheme. To our knowledge, this is the first attempt to ad-
dress this issue by objective means. To test our Hypothesis
2, we selected a number of prefix phonesthemes based on the
amount of statistical support obtained in our first experiment
and on how unambiguous and generally agreed upon were
the sense definitions proposed in the literature. We selected
10 phonesthemes with high semantic relatedness scores and
compiled a list of definitions based on the descriptions given
by Hutchins (1998), Marchand (1969) and Reid (1967). The
resulting list of phonesthemes together with their conjectured
semantic import is presented in Table 2.

Table 2: Phonesthemic senses

[ Prefix [ Definition | Example |
bl- swelling, explosion, extension, broadness | bloating
gl- light, vision, look, brightness, shine glitter
gr- threatening noise, anger, grip growl
scr- unpleasant sound, irregular movement screech
sn- nose, mouth, smell, snobbish person sneeze
spl- divergence, spread, splash splash
squ- discordant sound, softness, compression squeeze
Str- linear, forceful action, effort strike
SW- rhythmical movement swing
wr- irregular motion, twist wring

In order to automatically assign a semantic class label to a
phonestheme cluster, we used WordNet (Fellbaum, 2005), a
cognitively motivated ontology of words and concepts linked
by different semantic relations commonly used in compu-
tational linguistics. The main semantic relation connecting
words that express different concepts in WordNet is the su-
per/subordinate relation (also called hypernymy/hyponymy),
which establishes a hierarchy of concepts from more general
concepts like animal to increasingly specific ones like mam-
mal or whale. Since hypernymy is a transitive relation, for
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each word we can construct its hypernymy chain: the set of
all its superordinate concepts or hypernyms connecting the
word in question to the root node in the hierarchy (entity in
the case of WordNet), ordered by their level of specificity.

WordNet is made up of independent hierarchies for dif-
ferent parts of speech: nouns, verbs, and adjectives. Given
this (which prevents the possibility of assigning a cross-
categorical semantic label) and the fact that the hierarchies
for verbs and adjectives are far less complete than the noun
hierarchy, we focused on the common nouns® within each
phonesthemic cluster amongst those listed in Table 2. This
resulted in eliminating 37% of words over all clusters.

For each common noun w in a phonesthemic cluster, we
computed a set H(w) containing all superordinate concepts
in the hypernym chain of w, and derived a set # of poten-
tial class labels for that cluster by taking the union of all sets
H (w) for each noun w in the cluster. We then considered sev-
eral methods for selecting the most optimal semantic class
labels from #. Our methods were inspired by the approach
to unsupervised ontology acquisition proposed by Widdows
(2003) according to which “the most appropriate class-label
for the set [of words] S is the hypernym h € H which sub-
sumes as many as possible of the members of S as closely as
possible in the hierarchy” (p. 278). Widdows offers a general
scheme for defining an affiniry score function o(w, h) between
a word w and a candidate label A, which generates a ranking
of all the potential class labels for a cluster of words:

o) = {’: o)

where dist(w,h) is a distance measure between a given word
and a hypernym, f is a reward function that gives points to & if
it subsumes w and the more points the closer this relationship,
while g is a penalty function that subtracts points if 4 does not
subsume w. The best class-label is the hypernym h € H that
has the highest affinity score summed over all the elements in
the cluster.

Following Widdows, we chose as our distance measure the
number of intervening levels in the WordNet hierarchy and
set the rewarding function to f = 1/dist(w,h)?. As for the
penalty function g, we tested constant values of 0.25, 0.1 and
0.01. This particular variant of the scoring function thus mag-
nifies the credit given to classes that are close to the words
they subsume while giving a very small penalty to potential
labels that miss out words in the cluster. The expected result
is thus a ranking of class labels with a strong preference for
specificity. This seems congruent with the nature of phon-
estheme clusters, which may contain a relatively large num-
ber of words that due to, for example, etymological factors
are unlikely to be all related to the phonesthemic meaning.
In fact, it is acknowledged in the literature that the sound-
meaning associations are likely to be probabilistic (Hutchins,

if h e H(w)
ifhe H(w)

oWe discarded proper nouns, which in WordNet are always ter-
minal leaf nodes representing concrete instances rather than types.

1998) and that phonesthemic meaning can fall into related
but separate groups. For example, gr is taken to be related to
both angry noises (growl, grunt) and grabbing actions (grab,
grasp). Given this, we also considered an approach whereby
we first run a Gaussian Expectation-Maximization clustering
algorithm on each phonestheme cluster to obtain more refined
subsets of words and then run our scoring function algorithm
on each of the resulting sub-clusters.

Finally, to counterbalance the preference for high speci-
ficity but potentially low coverage of the words in the phon-
esthemic clusters, we experimented with a different labeling
algorithm that fixed a minimum coverage threshold. The al-
gorithm examines all hypernyms h € #, selects those that
subsume a minimum percentage 0 of words in the cluster and
then ranks them according to their specificity (the number of
intervening levels to the root node entity). We tested the per-
centage values 6 = 10 and 8 = 20 and run the algorithm both
on complete cluster phonesthemes and on the unsupervisedly
derived sub-clusters.’

Results

Our results show that successful labeling of phonesthemic
clusters can be performed but success depends on a number of
factors. First, it is necessary to clarify what we mean by suc-
cessful labeling. A labeling outcome of phonesthemic senses
was deemed successful when the top 10 labels fulfilled the
following criteria:

1. the topmost label is not the WordNet root node (entity);

2. the top 5 labels do not all have specificity score m < 2;

3. at least 50% of the top 10 labels carry meaning predicted
for a given phonestheme;

4. the top 10 labels together subsume at least 50% of the
words in the cluster.

These heuristics mean that if it is possible to establish the
semantic core of a phonesthemic cluster using WordNet hy-
pernym trees, the top labels will be both specific and in the
direction predicted by the literature. It is always possible to
subsume all the words in the cluster, independently of their
semantic relationship, under the root, just due to the Word-
Net structure. Such a label, however, would not be very in-
formative. By the same reasoning, we excluded the next two
levels of the hierarchy which contain concepts such as physi-
cal entity, abstraction, matter or relation. On the other hand,
specificity needs to be balanced out by coverage, i.e. it is pos-
sible to have very specific labels as top results but covering
only a small portion of words in the cluster. Finally, the la-
bels need to at least intuitively relate to the domain specified
in the literature for a given phonestheme.

Given these criteria, we obtained clear positive results for
one phonestheme (g/) out of 10 examined; moderately suc-
cessful results for two phonesthemes (sn and str); and neg-
ative results for the remaining 7 phonesthemes. We present

7 Assigning a higher value to g would also increase coverage.
However, for consistency g would have to be dependent on the size
of the cluster. We instead choose a simple approach here which re-
sorts to a percentage.
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Table 3: Top 5 WordNet labels for gl-, sn-, and str-

[ Prefix | Label | Score  Spec  Cov |
gl- brightness 4.82 6 23.7%
(N=56) flash 4.67 5 13.2%
radiance 3.92 7 13.1%
light 2.23 5 26.3%
look 2.16 8 10.5%
sn laugh 1.71 5 6.5%
(N=34) | unpleasant person 1.71 8 6.5%
photograph 1.71 7 6.5%
smell 1.71 8 6.5%
piece 1.71 4 6.5%
noise 1.71 6 6.5%
str effort 2.22 8 11.3%
(N=T76) motion 1.14 7 11.3%
labor 0.39 7 11.3%
change 0.98 6 20.5%

the top labels for the 3 successfully labeled phonesthemes in
Table 3, together with the scores calculated by the affinity
score function with penalty set to a constant g = 0.01 (Score),
specificity of each label (Spec) and the proportion of words
in the cluster subsumed (Cov).

The gl phonestheme received light- and vision-related la-
bels in all labeling algorithms that we tested. As can be seen
in Table 3, they are clearly specific, cover a large proportion
of words and all carry the predicted meaning. Similar results
are obtained using other two settings of the g function and
the coverage-based algorithm, although a small percentage of
high-level labels like entity does appear in these lists.

Our moderately supported phonesthemes sn and str obtain
labels in the predicted direction only with algorithms that
reward specificity over coverage. For sn (related to nose,
mouth and snobbism according to the literature), the best re-
sult is obtained with the distance measure and penalty func-
tion g = 0.01, while for the str phonestheme, related to force-
ful action — with the coverage-based algorithm of 6 = 10.

Similar conclusions can be drawn from phonesthemes that
did not lead to clear tendencies in their labels or to specific
enough labeling. Such lack of success is evident in either
only one label out of the top 10 being relevant to the pre-
dicted meaning or all of the labels being very general. In the
first case, for example, both gr and scr words are subsumed
under noise. In fact, this label appears in all instances of scr
scores as a top label, covering 26.9% of words in the clus-
ter. However, the rest of the top labels are either of a general
kind (entity, change) or not related to sound or movement
(handwriting, wound) and therefore we cannot consider the
labeling result to be very strong. In other cases, the words are
primarily subsumed by labels like entity and abstraction.

As explained in the Methods, we considered the possibility
that clusters might be composed of several groups of words
that do not all share the same semantic content. This is espe-
cially likely for numerous clusters (e.g. gr cluster even with
proper nouns removed contained 158 words). To counteract
this problem we examined how prior sub-clustering affects
the labeling results. The EM algorithm we used detected the

presence of two clusters for 4 out of 10 phonesthemes we
considered (bl, gl, gr and str).8 Again, however, the most
interesting result was obtained for the g/ phonestheme. Ac-
cording to the labels we obtained for its two sub-clusters,
only one of them was light-related. The second sub-cluster
contained words like gluten, glucose and glycoprotein, which
were placed under labels such as protein, macromolecule and
organic compound, indicating a clear presence of chemistry-
related words. No clear patterns were obtained for the other
3 phonesthemes with two sub-clusters. We do not exclude
the possibility that this result was due to the quality of the
vectors given to our clustering algorithm or to the algorithm
itself. For example, the presence of a large proportion of
kinship concepts in one of the gr sub-clusters (grandfather,
grandchildren etc.) led to it being assigned labels such as
grandparent and ancestor, while the same sub-cluster con-
tained words such as growl and grunt. Therefore, whether
the sub-clustering step is theoretically sound and if so how it
should be accomplished requires further study.

Discussion

The results of our first experiment are largely in line with
those of Otis and Sagi (2008), but we also see a number
of differences. On the one hand, we obtain higher support
for phonestheme clusters overall and show statistical signifi-
cance for several phonesthemes previously unsupported. On
the other hand, our support for the strongest phonesthemes in
the original study (gl and spr) is weaker. These differences
can be due to several factors. First, we use a different, more
modern and balanced, BNC corpus and our resulting phones-
theme clusters are larger. Second, we use a different method
for building our distributional model — both a different algo-
rithm (Random Projection) and a smaller window size.

It is worth noting that our tuning experiments with the g/
phonestheme show that the kind of pre-processing that we ap-
ply to the corpus and the window size parameter do make a
difference to the statistical results that can be obtained from
the model. However, while pre-processing could be viewed
as merely a methodological challenge common to all types of
corpus analyses, there might be a theoretical significance be-
hind the impact of the window size. Sahlgren (2008), for ex-
ample, suggests that a small window size is preferable for de-
tecting paradigmatic relationships between words (those that
hold between words that do not co-occur themselves but oc-
cur in similar contexts, e.g. dog and cat) and at the same time
there is evidence (Peirsman, Heylen, & Geeraerts, 2008) that
larger context is beneficial for picking out syntagmatic rela-
tionships that hold between words that often occur together
(e.g. “crystal clear”). To our knowledge, the kinds of rela-
tionships that hold between phonesthemic words (in general
or depending on a given phonestheme) have not been system-
atically investigated using such distinctions and further work
on the influence of the kind of context useful for detecting
phonesthemic relatedness, in conjunction with experimental

8For the other phonesthemes, no sub-clusters were detected.
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work on similarity, could offer clues on this issue.

Our labeling results are somewhat disappointing but, given
the novelty of our approach, still highly informative. The fact
that we obtain better results for sn and str phonesthemes with
algorithms that favor specificity over coverage and that label-
ing is not fully successful with the remaining phonesthemes
are puzzling given the high support that we obtain for these
phonesthemes in our first experiment. We believe that there
are two possibilities that can explain this.

The first possibility is that our WordNet-based methodol-
ogy is not fully suited to discover the common semantic con-
tent that is present. WordNet does not allow for integrating
hypernymy tree chains across different parts of speech, which
might be vital for phonesthemes, a large proportion of which
are verbs. In addition, it does not make all the distinctions that
would be useful for phonesthemic studies, e.g. both scr and gr
are associated with kinds of sound but one is “unpleasant’” and
the other one “threatening” — a distinction which is not part
of the WordNet taxonomy. On a more general note, hyper-
nymy might not be the most appropriate relation for all phon-
esthemes, e.g. snout and sneezing are not similar because they
are both a type of nose. Therefore, perhaps better labeling re-
sults could be achieved using a different semantic network,
such as ConceptNet?, which allows for exploiting other than
merely “is a” relations.

The second possibility, which we cannot reject, is that there
is in fact no semantic core that unites phonestheme clusters
and that the statistical support obtained by Otis and Sagi and
in our first experiment is a result of a particular methodology.
This interpretation is suggested by the fact that in our second
experiment the overall coverage of phonesthemic words by
the semantic labels is relatively low. Qualitative examination
of the clusters also seems to show that they contain a lot of
variability. In the future, we plan to design stricter tests —
for example, comparing phonestheme clusters to clusters that
share a particular (non-phonesthemic) sub-string rather than
simply to a group of random words.

Ultimately, the aim of automatically detecting phones-
themes and their semantic content in a more objective, falsifi-
able way is, on the one hand, to help researchers interested in
iconicity to validate the existence of phonesthemes previously
reported in the literature, to possibly discover new phones-
themes, and to settle disputes over their particular meaning;
and on the other hand, to open the door to investigating fur-
ther the cognitive nature of the semantic relationships that
unite phonestheme clusters. This study constitutes a step in
this research programme.
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