
Multiword Expression Identification
with Recurring Tree Fragments and Association Measures

Federico Sangati
Fondazione Bruno Kessler (FBK)

Trento, Italy
sangati@fbk.eu

Andreas van Cranenburgh
Huygens ING, Royal Netherlands Academy

of Arts & Sciences; ILLC, Univ. of Amsterdam.
andreas.van.cranenburgh@huygens.knaw.nl

Abstract

We present a novel approach for the identifica-
tion of multiword expressions (MWEs). The
methodology extracts a large set of recurring
syntactic fragments from a given treebank us-
ing a Tree-Kernel method. Differently from
previous studies, the expressions underlying
these fragments are arbitrarily long and can
include intervening gaps. In the initial study
we use these fragments to identify MWEs as a
parsing task (in a supervised manner) as pro-
posed by Green et al. (2011). Here we obtain
a small improvement over previous results. In
the second part, we compare various associ-
ation measures in reranking the expressions
underlying these fragments in an unsupervised
fashion. We show how a newly defined mea-
sure (Log Inside Ratio) based on statistical
parsing techniques is able to outperform classi-
cal association measures in the French data.

1 Introduction

According to many current linguistic theories, lan-
guage users produce and understand sentences with-
out necessarily fully decomposing them into ‘words’
and ‘rules’; rather, multiword units may function as
the elementary building blocks (Goldberg, 1995; Kay
and Fillmore, 1997; Stefanowitsch and Gries, 2003).
A growing literature is emerging which focuses on
“idiosyncratic interpretations that cross word bound-
aries (or spaces)” (Sag et al., 2002) also referred to as
multiword expressions (MWEs) . These expressions,
such as “to beat around the bush”, can be arbitrar-
ily long. An important question for computational
linguistics is how to identify such building blocks us-
ing statistical regularities in large corpora (Zuidema,
2006; Ramisch et al., 2012).

Most of the work on the identification of MWEs
has focused on very short expressions, typically bi-
grams (Evert, 2005) or trigrams (Lyse and Andersen,
2012) using unsupervised techniques based on word
association measures. Recent work (Green et al.,
2011, 2013) has incorporated full phrase-structure
trees in the process of multiword expression identifi-
cation, obtaining a 36.4% F1 absolute improvement
in MWE identification using a Tree-Substitution
Grammar over an n-gram surface statistics baseline
(Ramisch et al., 2010). However, one needs to note
that the French Treebank (Abeillé et al., 2003) used in
this study, contains explicitly tagged MWEs (as a spe-
cial phrasal category), and therefore the comparison
between supervised and unsupervised identification
is not entirely fair.

In the current work, we present a hybrid method
using both phrase-structure representation of MWEs,
and association measures for ranking them in an unsu-
pervised fashion (see table 1 for a quick comparison
between the current work and previous approaches).
We make use of a Tree-Kernel method (Collins and
Duffy, 2002) for extracting a large set of recurring
syntactic fragments from a given treebank.

The rest of the paper is organized as follows: in
section 2 we present the idea of adopting recurring
tree fragments extracted from a treebank using a Tree
Kernel. In section 3 we introduce the treebanks from
which tree fragments are extracted. Next we perform
two types of experiments: in section 4 we employ the
extracted fragments for supervised identification of
multiword expressions as a supervised parsing task;
in section 5, we compare how well different associa-
tion measures rerank the expressions underlying the
extracted fragments in an unsupervised fashion.



Ramisch et al. (2010) Green et al. (2013) This work

Unsupervised Yes No Yes
Association measures Yes No Yes
Syntax POS tags flat rules hierarchical
Gaps No No Yes
Representation 〈 JJ mountain, NN bike 〉 MWN

NN
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the
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off

NPVB

get

Table 1: Comparison of the current work with previous approaches.

2 Recurring Fragments

In our work, we investigate ways of automatically
detecting MWEs in large treebanks by searching for
recurring patterns. The patterns consist of tree frag-
ments that occur two or more times in the treebank.
This is an ideal constraint if we want to assume that
a necessary condition for a fragment to yield a MWE
is to recur multiple times in a representative corpus.

This is also one of the original motivations be-
hind the Data-Oriented Parsing (DOP) framework in
which “idiomaticity is the rule rather than the excep-
tion” (Scha, 1990). For instance, if we have seen the
MWE “pain in the neck” several times before, we
should store the whole fragment for later use.

Data-Oriented Parsing has been most successfully
implemented (Bod, 1992; Bod et al., 2003) with Tree
Substitution Grammars (TSGs), A Tree-Substitution
Grammar consists of a bag of elementary trees. In
DOP, these are arbitrarily large fragments extracted
from a treebank corresponding to syntactic construc-
tions. They can include any number of lexical units,
with possible intervening gaps, and are therefore
very suited to represent MWEs ranging from fixed
idiomatic cases such as “kick the bucket” to more
flexible expressions such as “break X up” and “as far
as X is concerned” to even longer constructions such
as “everything you always wanted to know about X
but were afraid to ask.”

Since extracting all possible fragments from a
large treebank is impossible (the number of possi-
ble fragments grows exponentially with the size of
a tree) it is necessary to work with a restricted set
of fragments. Several sampling methods have been
proposed (Bod, 2001; Zuidema, 2007; Cohn et al.,

2010), but all include some limitations (e.g., use of
random sampling methods, restriction in the size of
the fragments, number of lexical items).

An alternative is to use a Tree Kernel which quan-
tifies the similarity of trees (Collins and Duffy, 2002).
Sangati et al. (2010) introduces FragmentSeeker,
an algorithm based on a Tree Kernel that makes the
similarities between trees explicit by extracting recur-
ring tree fragments. FragmentSeeker is based on
a dynamic programming algorithm which compares
every pair of trees of a given treebank and extracts
a list of maximal overlapping fragments in all the
pairs.

In a recent effort, van Cranenburgh (2014) devel-
oped an improved algorithm1 for fragment extraction
which runs in linear average time in the size of the
treebank (it is 30 times faster than the original im-
plementation on the Penn treebank). This substantial
speedup is due to the incorporation of the Fast Tree
Kernel (Moschitti, 2006), and opens up the possibil-
ity of handling much larger treebanks.

Figure 1 shows an example of a pair of trees shar-
ing a common fragment (with lexical items depicted
in blue and non-lexical terminals in green).

The fragments extracted with these tools have
proven to be successful for several NLP tasks such as
statistical parsing, as in DOP (Sangati and Zuidema,
2011; van Cranenburgh and Bod, 2013), author-
ship attribution (van Cranenburgh, 2012), and native
language detection (Swanson and Charniak, 2012,
2013).

1The tool is publicly available at https://github.com/
andreasvc/disco-dop
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Figure 2: A comparison of treebanks and their MWE annotation. (a) French treebank; flat MWE annotation.
(c) Dutch Lassy treebank; flat MWE annotation. (b) Annotated English Gigaword; no MWE annotation.
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Figure 1: An example of two syntactic trees sharing
a common fragment (highlighted).

3 Treebanks

We are using three different treebanks for extracting
MWEs across three languages: French, Dutch and
English. See table 2 for statistics on treebank sizes
and number of fragments, and figure 2 for a compari-
son of the MWE annotations in the treebanks.

Treebank Trees Total Frags Selected Frags
French 13K 274K 86K
Dutch 52K 536K 193K
English 500K 4.3M 2.8M

Table 2: Treebank size and number of fragments
extracted and employed in the experiments. The
last column reports the number of fragments after
filtering out all those which do not contain at least a
content word and a non-punctuation word.

3.1 French Treebank
We adopt the version of the French Treebank (Abeillé
et al., 2003) from June 2010 used in Green et al.
(2011). In this treebank MWEs are annotated with

a flat bracketing (see figure 2a), that is, all words
are grouped non-hierarchically, immediately under
a single phrase which has a specific label per each
phrasal category (e.g., MWV for verbal expression,
MWN for nominal expressions, etc). We use this cor-
pus for both supervised (parsing) and unsupervised
(association measures) identification of MWEs .

3.2 Dutch Treebank
For Dutch, we employ the LASSY Small tree-
bank (Noord, 2009) which is a syntactically anno-
tated and manually verified corpus of 1 million words.
As shown in figure 2b, the MWE annotation is flat as
in the French Treebank, but a single category (MWU)
is used to label them. We use this treebank for both
supervised and unsupervised identification of MWEs.

3.3 Annotated English Gigaword
For English, we use the Annotated English Gigaword
treebank2 which contains more than 180 million au-
tomatically parsed sentences.

The size of this treebank is still prohibitively large
even for the fast version of FragmentSeeker. We
therefore decided to use only a sample of the treebank
by selecting one out of every 150 sentences. This
leaves us with a treebank of 500K structures, still 10
times larger than the Dutch treebank. However, since
we want to extract MWEs, we are only interested
in fragments with at least two lexical items. This
restriction enables us to apply a further optimization
to the algorithm which substantially boosts the ex-
traction speed: after indexing sentences by the words
they contain, we compare every tree structure only to
other structures sharing at least two words.

2http://catalog.ldc.upenn.edu/LDC2012T21



The annotation of the English Gigaword treebank
follows the Penn Treebank scheme (Marcus et al.,
1994) which does not include any special category
for MWEs. As we have no gold standard for MWE
annotation, we can only employ this treebank for
unsupervised experiments and qualitative analysis.
However, as shown in figure 2c, this annotation pre-
serves the full hierarchical structure of MWEs and
allows us to employ the full potential of Tree Kernels
for extracting arbitrarily large MWEs with possible
intervening gaps.

4 Finding MWEs by parsing

Green et al. (2011) introduce the idea of using a pars-
ing model to identify MWEs. This is a supervised
methodology as it requires a training treebank with
gold MWE labels. The experiments of this section
will therefore be performed on the French and Dutch
treebanks.

4.1 Parsing Methodology

As parsing model we use the Double-DOP (2DOP)
model (Sangati and Zuidema, 2011), as implemented
in the disco-dop parser (van Cranenburgh and Bod,
2013). The resulting TSG grammar is constituted by
the recurring fragments extracted from the training
portion of the treebank (as explained in section 2)
and additionally the Context-Free Grammar (CFG)
rules occurring once (in order to ensure better cov-
erage over the test sentences). In a TSG, fragments
are combined by means of the substitution operation
to derive the tree structures of novel sentences (see
figure 4 for an example of fragments combination).
We redirect the reader to Bod et al. (2003) for more
details about TSG parsing.

In our models we use simple relative frequencies as
fragment probabilities. As preprocessing we apply a
set of manual state splits, heuristics for head-outward
binarization, and an unknown word model for assign-
ing POS tags to out-of-vocabulary words. For Dutch,
we use the same preprocessing as described in van
Cranenburgh and Bod (2013). For French, we apply
similar preprocessing as Green et al. (2013)3.

3For the binarization we apply the markovization setting
h = 1, v = 1, i.e., no additional parent annotation, and every
child constituent is conditioned on the previous two siblings.Note
that Green et al. (2013) uses h = ∞, v = 1 markovization (Green,
personal communication).

4.2 Results

In table 3 we present the comparison of the overall
parsing results on the French and Dutch treebanks
together with the MWE detection score. The overall
parsing results (F1 score, exact match) are not spe-
cific to MWEs, but describe the general quality of the
parsing model. The MWE-F1 score is an F1 score of
correctly parsed MWE constituents.

For French we compare our model (2DOP) against
two systems reported in Green et al. (2013), i.e., the
factored Stanford parser and a TSG-DP parser in
which tree fragments are drawn from a Dirichlet pro-
cess (DP) prior (Cohn et al., 2010). Our system
performs better than the other systems, both in terms
of overall parsing results and MWE identification
specifically.

For Dutch, since this is the first attempt to extract
MWEs via parsing, we compare our result with a
simple PCFG baseline. Our 2DOP model performs
well above the baseline both in terms of parsing and
MWE identification.

Finally, table 4 presents the detailed results for the
identification of the MWEs for each category in the
French treebank. Our system performs better in 4 out
of 8 categories compared with the Stanford parser
and the DP-TSG model. The Dutch results consist
of a single category, so we do not report a further
breakdown.

Parser F1 EX MWE-F1

FRENCH
Green et al. (2013): DP-TSG 76.9 16.0 71.3
Green et al. (2013): Stanford 79.0 17.6 70.5
disco-dop, 2DOP 79.3 19.9 71.9

DUTCH
disco-dop, PCFG baseline 63.9 21.8 50.4
disco-dop, 2DOP 77.0 35.2 75.3

Table 3: Performance of the parsing models on the
French and Dutch treebanks, with respect to parsing
results (F1 score and exact match) and the MWE-F1
score, for sentences ≤ 40 words.

5 Identifying MWEs with Tree Fragments
and Association Measures

In this section we focus on the unsupervised detec-
tion of MWEs. We start with the same Tree Kernel



#gold DP-TSG Stanford This work

MWN 457 65.7 64.8 68.9
MWADV 220 77.2 75.0 70.0
MWP 162 79.5 81.2 81.9
MWC 47 85.8 86.3 80.7
MWV 26 56.2 57.1 55.9
MWPRO 17 75.3 72.2 78.1
MWD 15 65.1 68.4 66.7
MWA 8 36.0 26.1 37.5

Total 955 71.3 70.5 71.9

Table 4: French MWE identification, F1 score per
category, for sentences ≤ 40 words.

methodology illustrated in section 2 for extracting the
set of recurring fragments from the various treebanks.
Next, we apply various association measures (AMs)
for ranking these fragments and compare how they
perform in distinguishing those fragments underlying
MWEs from the others.

In section 5.3 we conduct a case study on the En-
glish treebank for which we have no MWE annota-
tions, whereas in section 5.4 we apply a quantita-
tive analysis to assess how the AMs perform in the
French and the Dutch treebank (for which we have
gold MWE annotations).

5.1 Signatures

Differently from most existing works on MWEs dis-
covery, our methodology does not focus on MWEs of
a specific type or size. However, the association mea-
sures that are commonly employed are strongly influ-
enced by the length of the expressions, i.e., shorter
expressions tend to have higher association scores.
Moreover, since we also take into account fragments
with possible gaps, we need to be careful in distin-
guishing fully lexicalized expressions from those con-
taining intervening phrasal categories.

We therefore devise a way to partition the set of
extracted fragments into a number of bins. All frag-
ments belonging to the same bin share the same sig-
nature and are therefore mutually comparable (in
terms of their association scores). The signature of a
fragment is a sequence {L, X}+ of symbols obtained
by mapping each frontier node of the fragment to
L if it is a lexical node, or X if it is a non-lexical
node. Figure 3 shows an example of a fragment and
its corresponding signature.

VP

VBD

caught

NP

PP

IN

by

NP

NN

surprise sign.
−−−→ L X L L

Figure 3: Example of a fragment (of length 4 with a
gap in the second position) with its signature.

5.2 Association Measures
A number of Association Measures (AM) have been
defined in the literature to assess the cohesiveness
of a potential MWE. In this work we take into con-
sideration two standard association measures, the
Pointwise Mutual Information (PMI) and the Log-
Likelihood Ratio (LLR). Both AMs are generalized
to arbitrarily long expressions, and are defined over
the sequence of symbols S 1, S 2, . . . , S n, where S i is
the pair 〈posi,wordi〉, with posi and wordi being the
pre-terminal label and lexical item of the i-th frontier
node, respectively; wordi = ∅ if the i-th frontier node
is a non-lexical item. In addition, we define a novel
association measure, namely the Log Inside Ratio
(LIR), based on probabilities of a probabilistic TSG
underlying the extracted fragments.

PMI The Multivariate Generalization of Pointwise
Mutual Information, also referred to as Total Corre-
lation (Watanabe, 1960) and Multi-Information (Stu-
denỳ and Vejnarová, 1998; Van de Cruys, 2011), is
defined as follows:

PMI(S 1, S 2, . . . , S n) = log
p(S 1, S 2, . . . , S n)∏n

i−1 p(S i)

where p(S 1, S 2, . . . , S n) is the relative frequency
with which the signature S 1, S 2, . . . , S n has been
seen within the set of fragments sharing the same
signature, and p(S i) is the relative frequency of see-
ing the symbol S i in the i-th position of the signature
within the same set of fragments.

LLR The Log-Likelihood Ratio generalized for a
sequence with an arbitrary number of symbols (Su,
1991) is defined as follows:

LLR(S 1, . . . , S n) = log
p(S 1, . . . , S n)∑

σ∈CSP(S 1,...,S n)
∏

s∈σ p(s)

where the numerator is as in PMI, while the denom-
inator represents the probability of the sequence to



be derived from contiguous spans. More precisely,
CSP(S 1, . . . , S n) returns the ways (σ) of partitioning
the sequence S 1, . . . , S n in contigous spans (s).4

LIR The Log Inside Ratio is a newly derived asso-
ciation measure which specifies the probability that
a Probabilistic TSG (PTSG) grammar generates a
given fragment in a single step with respect to the
total probability of generating it in any possible way,
i.e., by combining smaller fragments together. Fig-
ure 4 shows an example of how a TSG can generate
the same fragment in multiple ways. The LIR is
computed as follows:

LIR(frag) = log
p(frag)

inside(frag)

where the numerator is the probability of the frag-
ment according to the PTSG extracted from the tree-
bank,5 while the denominator is the total probability
with which the grammar generates the given frag-
ment starting from its root category (in any possible
way).

VP

PP

NP

NN

account

IN

into

NPVB

take

VP

PPNPVB

take

◦ PP

NP

NN

IN

into

◦ NN

account

Figure 4: Example of how a TSG can generate the
same fragment in two different ways, i.e., in a single
step (above), and in 3 subsequent steps (below).

5.3 Case Study on English Treebank

We have conducted a case study on the English tree-
bank, for which no MWE gold labels are available.

4CS P stands for Contiguous Sequence Partition. As an
example, CSP(S 1, S 2, S 3) =

{[[S 1, S 2], [S 3]]; [[S 1], [S 2, S 3]]; [[S 1], [S 2], [S 3]]}
5Here we use the same PTSG as in the parsing experiments

of the previous section.

In this initial study we limited the qualitative analysis
to the PMI association measure.

The histogram in figure 5 reports the distribution
of the extracted fragments in the most common sig-
nature bins. This includes fragments with up to 7
terminals at the frontier nodes, with at most 3 non-
lexical nodes (X in the signatures). Tables 5 and 6
present a list of fragments starting with the verb take
with and without a gap in the second position, sorted
by the PMI measure. In both cases there is a contrast
between MWEs at the top of the list (e.g., take into
account) and more compositional expressions at the
bottom (e.g., take QP years to, take the money).
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Figure 5: Distribution of the 2.8M recurring frag-
ments extracted from the English treebank into the
various signature bins. Only bins with at least 100
fragment types are reported.

5.4 Quantitative Results on French and Dutch
Quantitative evaluation of MWE identification is a
non-trivial task. Typically, association measures are
tuned so that only expressions above a specific thresh-
old are considered MWEs. Alternatively, precision
and recall measures on a full reference data or on
n-best lists are used (Evert and Krenn, 2001). In
our case the task is more challenging as we would
need to fix a different threshold value for each set of
fragments sharing the same signature. We therefore
decided to resort to a novel evaluation metric which
would enable us to compare how the various AMs
rerank the full list of expressions sharing the same
signature in a more neutral and informative way.

We do so by calculating, for each signature bin, the
percentage of MWEs present in subsequently smaller
portions of the reranked list, limiting the evaluation



PMI Freq. Sequence Pattern

18.0 6 VB take NP IN into NN account
14.6 6 VB take NP IN for VBN granted
13.6 7 VB take DT NN look IN at
12.9 6 VB take NP TO to NN court
12.5 6 VB take NN RB away IN from
12.4 17 VB take NP RB away IN from
12.0 6 VB take JJ NN action TO to
11.2 5 VB take NP RB away IN from
10.5 6 VB take QP NNS years TO to
8.3 10 VB take DT NN time TO to

Table 5: List of English fragments conforming to the
sequence pattern VB take X L L, sorted by PMI.

PMI Freq. Sequence Pattern

15.3 13 VB take IN into NN account
9.8 5 VB take NN responsibility IN for
9.7 8 VB take NN credit IN for
9.3 12 VB take DT a NN look
8.4 88 VB take NN advantage IN of
8.4 7 VB take NN place IN on
8.3 6 VB take NN effect IN in
8.1 14 VB take NNS steps TO to
· · · · · · · · ·

4.6 6 VB take DT the NN money

Table 6: A sample of English fragments conforming
to the sequence pattern VB take L L, sorted by PMI.

to fewer and fewer candidates at the beginning of
the list (as association measures tend to place MWEs
on top). This metric is similar to the “precision at k”
used in Information Retrieval, except that instead of
using a fixed integer k, we use varying portions of
the list (i.e., 1, 1/2, 1/3, . . . , 1/10).

Figure 6 shows the resulting graphs for the three
AMs and the most common signatures in the French
and Dutch treebanks. All curves are usually mono-
tonically increasing, indicating that for all measures
the concentration of MWEs increases at the top of the
reranked list. PMI and LLR often overlap (they are
mathematically identical for expressions of length 2),
with LLR being slightly better for French and PMI
for Dutch. Finally LIR is consistently better than the
other 2 AMs for French while being worse or on a
par with the others for Dutch. We are currently inves-
tigating the reason for this discrepancy. Our current
hypotheses are: (i) the French treebank makes use
of several MWE categories while the Dutch treebank
has a single MWE category, and (ii) Dutch MWEs
tend to be less rigid than the French ones.

Table 7 shows a single-figure F1 evaluation of
the three AMs, obtained by aggregating the top 1/5
candidates of each bin. For this evaluation, recall and
precision are computed, with the gold set consisting
of all the extracted lexicalized fragments with MWE
gold tags.6 According to these results the Log Inside
Ratio (LIR) performs best for both French and Dutch.
This evaluation is not ideal, as our method aims to go
beyond the small, contiguous MWE strings annotated
in the treebanks. In addition, manual inspection of

6Only fully lexicalized fragments are selected, since the tree-
banks do not annotate any MWEs with open slots.

the selected candidates reveals that many of them
are MWEs, while not part of the gold standard. This
should be addressed in future work with a manual
evaluation.

Treebank PMI LLR LIR

French 33.0 32.3 45.8
Dutch 49.4 46.6 50.5

Table 7: F1 scores for the top 1/5 candidates of each
bin as ranked by the three AMs evaluated against
MWEs in extracted recurring fragments.

6 Conclusion

We have presented a novel approach for the identifi-
cation of MWEs based on recurring fragments auto-
matically extracted from a treebank. We have shown
that a probabilistic tree-substitution grammar (PTSG)
constructed with these fragments outperforms previ-
ous results for the supervised identification of MWEs.
Finally we have conducted a study to asses how var-
ious association measures (AMs) can rerank the ex-
tracted fragments for the unsupervised identification
of MWE. Here we proposed a new measure based on
PTSG, the Log Inside Ratio, which shows compet-
itive results when compared against other classical
association measures.
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Figure 6: Results for the French and Dutch treebanks when ranking of the MWEs for various signatures
according to several association measures. Each line reports how the percentage of MWEs (y-axis) changes
when restricting the list to fewer and fewer top candidates. More specifically, we compute the percentage of
MWE in the full list of fragments (1), in the first half (1/2), the first third (1/3), and so on until the first tenth
(1/10).
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