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Abstract

The aggregate saving rate results from the interplay of intertemporal
preferences across consumption streams over the lifetime of a multitude
of agents that compose a population at a given time. Individuals form
consumption habits based on their history, age and life expectancy, giving
rise to a life cycle consumption pattern sensitive to changes in permanent
income. Hence, the aggregate impatience bias towards present vs. future
consumption and the aggregate saving rate depend on the evolution of
the age distribution of a population. The present paper explores such
a relationship by constructing an intertemporal equilibrium model with
overlapping generations of finitely lived individuals endowed with recur-
sive preferences that are additively separable over successive consumption
streams as in [1].
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1 Introduction

The aggregate saving rate results from the interplay of intertemporal preferences
across consumption streams over the lifetime of a multitude of agents that com-
pose a population at a given time. Individuals form consumption habits based
on their history, age and life expectancy, giving rise to a life cycle consumption
pattern sensitive to changes in permanent income. Hence, the aggregate impa-
tience bias towards present vs. future consumption and the aggregate saving
rate depend on the evolution of the age distribution of a population. The present
paper explores such a relationship by constructing an intertemporal equilibrium
model with overlapping generations of finitely lived individuals endowed with
recursive preferences that are additively separable over successive consumption
streams as in [1].

2 Continuous time formulation

In the continuous time framework of [1], agents order consumption streams
according to the following criterion

U(0C∞) = −
∫ ∞

0

e−
∫ t
0
u(c)dτdt (1)

which allows for additive separability of preferences at any time T ∈ [0,∞]

G(T,CT , φ) = −
∫ T

0

e−
∫ t
0
u(c)dτdt+ φ · e−

∫ T
0
u(c)dt (2)

with aggregate utility from future consumption denoted by

φ = U [TC∞] = −
∫ ∞

T

e−
∫ t
T
u(c)dτdt (3)

and additively aggregated to utility from past consumption, upon discount-
ing according to the factor

e−
∫ T
0
u(c)dt (4)

In fact, . . . can be rewritten as

G(T,CT , φ) = −
∫ T

0

e−
∫ t
0
u(c)dτdt+ [−

∫ ∞

T

e−
∫ t
T
u(c)dτdt] · e−

∫ T
0
u(c)dt (5)

with

e−
∫ T
0
u(c)dt (6)

acting like a discount factor over the time interval [0, T ]. In order to aggre-

gate the utility flow [−
∫∞
T
e−

∫ t
T
u(c)dτdt], it has to be discounted by e−

∫ T
0
u(c)dt.
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3 Discrete time formulation

The above formulation can be generalized to a discrete time setting, more suit-
able to study the quantitative and empirical relationship between the evolution
across time of the age distribution of a population and the aggregate impatience
and saving rates

U(1C2) = −e−[u(c(1)]) − e−[u(c(1)+u(c(2)]) (7)

U(1C3) = U(1C2) + [−e−[u(c(1)+u(c(2)++u(c(3)])] (8)

U(1C2) = −
2∑

t=1

e−
∑t
τ=1 u(c(τ)) (9)

3.1 Infinite life span

Agents order consumption streams according to the following criterion

U(1C∞) = −
∞∑

t=1

e−
∑t
τ=1 u(c(τ)) (10)

which allows for additive separability of preferences at any time T ∈ [1,∞]

U(1C∞) = −
T−1∑

t=1

e−
∑t
τ=1 u(c(τ)) + φ · {e−

∑T−1
t=1 u(c(t))} (11)

with aggregate utility from future consumption denoted by

φ = U(TC∞) = −
∞∑

t=T

e−
∑t
τ=T u(c(τ)) (12)

and

e−
∑T−1
t=1 u(c(t)) (13)

is a discount factor that acts on the utility of consumption streams enjoyed
from T to ∞. Such discount factor is distinct from the rate of impatience, and
increases with T as longer consumption histories create the habit of discounting
more heavily the utility enjoyed from future consumption sequences.

Given the additive structure (11), the marginal utility of a consumption
increment at time T is

UT (TC∞) = u′(c(T )) · {
∞∑

t=T

e−
∑t
τ=T u(c(τ))} (14)

and its rate of change at time T , along a sequence of constant consumption
levels, can be computed as the (negative of) the derivative (with respect to T )
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of the logarithm of (14). It is a measure of the pure rate of time preference,
denoted by

ρ = − d

dT
{log[UT (TC∞)]} = {

∞∑

t=T

e−
∑t
τ=T u(c(τ))}−1 = −[UT (TC∞)]−1 (15)

Question: Is u′(c(T )) = 1 along such a path? The rate of growth of (14) is
the derivative (with respect to time) of its logarithm, and such rate is constant.

4 Aggregate impatience

4.1 Finite homogeneous life expectancy

Each generation shares the same finite time horizon, i.e. at birth individuals
expect to live for the same finite number of periods, and are endowed with
the optimal steady state level of assets1. As individuals within a given gen-
eration grow older, they generate a longer tail of past consumption levels and
expect a shorter sequence of future consumption levels. Eventually, the num-
ber of younger generations in existence decreases. Conversely, the greater the
number of younger cohorts, the shorter the tails of past consumption, and the
lower aggregate impatience. Thus, aggregate impatience grows with time, as
generations age, until either a sufficient number of older generations disappear
or fertility increases the number of individuals populating younger generations.
Each generation in existence at a given time expects a different residual life
span.

The (common over a finite set of generations) time horizon at birth is T .
The distribution of impatience rates at time T ≤ T + (n− 1) and across the

n ∈ N generations can be computed by use of the sequence of future intertem-
poral utilities.

At time T , generation 1, born at time 1, faces the sequence of future con-
sumption levels from time T to time T

φ1(T ) = U(TCT ) = min[1,max(0, T − T )] · [−
T∑

t=T

e−
∑t
τ=T u(c(τ))]

with T > T ⇒ min[1,max(0, T − T )] = 0, since at time T > T generation
1 has just gone extinct. Generation 2 faces the sequence of future consumption
levels from time T to time T + 1

1As will be shown later, the sequence of optimal consumption levels is a function of the
sequence of optimal asset levels.
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φ2(T ) = U(TCT+1) = min[1,max(0, T + (2− 1)− T )] · [−
T+1∑

t=T

e−
∑t
τ=T u(c(τ))]

= −
T∑

t=T

e−
∑t
τ=T u(c(τ)) −

T+1∑

t=T+1

e−
∑t
τ=T u(c(τ))

= −
T∑

t=T

e−
∑t
τ=T u(c(τ)) − e−

∑T+1
τ=T u(c(τ))

= φ1(T )− e−
∑T+1
τ=T u(c(τ))

generation 3 faces the sequence of future consumption levels from time T to
time T + 2

φ3(T ) = U(TCT+2) = min[1,max(0, T + (3− 1)− T )] · [−
T+2∑

t=T

e−
∑t
τ=T u(c(τ))]

= −
T∑

t=T

e−
∑t
τ=T u(c(τ)) −

T+2∑

t=T+1

e−
∑t
τ=T u(c(τ))

= −
T∑

t=T

e−
∑t
τ=T u(c(τ)) − e−

∑T+1
τ=T u(c(τ)) − e−

∑T+2
τ=T u(c(τ))

= −
T∑

t=T

e−
∑t
τ=T u(c(τ)) − e−

∑T+1
τ=T u(c(τ))(1− eu(c(T+2)))

= φ2(T )− e−
∑T+2
τ=T+1 u(c(τ))

along a ray with c(τ) constant. Generation j faces the sequence of future con-
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sumption levels from time T to time T + (j − 1)

φj(T ) = U(TCT+(j−1)) = min[1,max(0, T + (j − 1)− T )] · [−
T+(j−1)∑

t=T

e−
∑t
τ=T u(c(τ))]

= −
T∑

t=T

e−
∑t
τ=T u(c(τ))

−e−
∑T+1
τ=T u(c(τ))

−e−
∑T+2
τ=T u(c(τ))

...

−e−
∑T+(j−1)
τ=T u(c(τ))

= φj−1(T )− e−
∑T+(j−1)

τ=T+(j−2)
u(c(τ))

along a ray with c(τ) constant, with min[1,max(0, T + (j − 1) − T )] denoting
the probability of generation j being alive at time T .

Hence, generation n faces the sequence of future consumption levels from
time T to time T + (n− 1)

φn(T ) = U(TCT+n) = min[1,max(0, T + (n− 1)− T )] · [−
T+(n−1)∑

t=T

e−
∑t
τ=T u(c(τ))]

= −
T∑

t=T

e−
∑t
τ=T u(c(τ)) − e−

∑T+1
τ=T u(c(τ))

−e−
∑T+2
τ=T u(c(τ))

−e−
∑T+3
τ=T u(c(τ))

...

−e−
∑T+j
τ=T u(c(τ))

...

−e−
∑T+(n−1)
τ=T u(c(τ))

= φn−1(T )− e−
∑T+(n−1)

τ=T+(n−2)
u(c(τ))

The aggregate future intertemporal utility of the population is the aggrega-
tion, over the set of generations, of the above sequence. For example, at a time
when all generations are alive, T > n, and with a population composed of two
generations, such aggregate is
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Φ2
T>n = φ1(T ) + φ2(T ) = −2 ·

T∑

t=T

e−
∑t
τ=T u(c(τ)) − e−

∑T+1

τ=T
u(c(τ))

while, with three generations it is

Φ3
T>n =

3∑

i=1

φi(T ) = −3 ·
T∑

t=T

e−
∑t
τ=T u(c(τ)) − 2 · e−

∑T+1

τ=T
u(c(τ))?

Φ3
T>n =

3∑

i=1

φi(T ) = −3·
T∑

t=T

e−
∑t
τ=T u(c(τ))−2·e−

∑T+1

τ=T
u(c(τ))−e−

∑T+2

τ=T+1
u(c(τ))

With n ∈ 1, . . . , N <∞, the aggregate (across the set of generations) expected
future utility at a time T > n, when all generations are in existence, is

ΦnT>n =

n∑

i=1

φi(T ) = n ·
T∑

t=T

e−
∑t
τ=T u(c(τ))

+(n− 1) · e−
∑T+1

τ=T
u(c(τ))

+(n− 2) · e−
∑T+2

τ=T+1
u(c(τ))

+ . . .

+(n− j) · e−
∑T+j

τ=T+1
u(c(τ))

+ . . .

+e
−∑T+(n−1)

τ=T+1
u(c(τ))

where (n−j), j = 1, ..., (n−1), takes into account that j out of n generations
cannot survive beyond the common time horizon.

As time goes by, generations age and some are gone. As generations age,
they stream longer tails of past consumption, thus contributing to the increase
of aggregate future intertemporal utility, thus reducing impatience. As they
disappear, their past consumption tails no longer add to aggregate future in-
tertemporal utility, increasing impatience. What is the net effect as T extends
beyond T? Aggregate impatience decreases as T → n as newer generations
and ageing cohorts add to aggregate future intertemporal utility. Aggregate
impatience monotonically increases as T > n increases past some Tn < T + n,
because too many generations are gone and others get missing.

4.2 An example

In order to analyze the evolution of aggregate impatience of a simple stylized
population, three generations are assumed, born at times 1, 2 and 3 respectively.
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The common life expectancy is five periods, T = 5, so that at times T = 3, 4, 5
all generations are alive, while from T = 6 to T = 8 the number of generations
alive, n, converges monotonically to zero. In this case, at time T , generation 1,
born at time 1, faces the sequence of future consumption levels from time T to
time 5

φ1(T ) = U(TC5) = min[1,max(0, 5 + (n− 1)− T )] · [−
5∑

t=T

e−
∑t
τ=T u(c(τ))]

generation 2 faces the sequence of future consumption levels from time T to
time 6

φ2(T ) = U(TC6) = −
6∑

t=T

e−
∑t
τ=T u(c(τ)) = −

5∑

t=T

e−
∑t
τ=T u(c(τ))

−e−
∑6
τ=T u(c(τ))

and generation 3 faces the sequence of future consumption levels from time T
to time 7

φ3(T ) = U(TC7) = −
7∑

t=T

e−
∑t
τ=T u(c(τ)) = −

5∑

t=T

e−
∑t
τ=T u(c(τ))

−2 · e−
∑6
τ=T u(c(τ))

−e−
∑7
τ=T u(c(τ))

Hence

Φ3
T =

3∑

i=1

φi = −3
5∑

t=T

e−
∑t
τ=T u(c(τ))

−2 · e−
∑6
τ=T u(c(τ))

−e−
∑7
τ=T u(c(τ))

At time T = 1 only generation 1 is alive

Φ3
1 = −

5∑

t=1

e−
∑t
τ=1 u(c(τ))

At time T = 2 only generations 1 and 2 are alive

Φ3
2 = −2

5∑

t=2

e−
∑t
τ=2 u(c(τ)) − e−

∑6
τ=2 u(c(τ))
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At times T = 3, 4, 5 all generations are alive

Φ3
3 = −3

5∑

t=3

e−
∑t
τ=1 u(c(τ))

−2 · e−
∑6
τ=3 u(c(τ))

−e−
∑7
τ=3 u(c(τ))

Φ3
4 = −3

5∑

t=4

e−
∑t
τ=1 u(c(τ))

−2 · e−
∑6
τ=4 u(c(τ))

−e−
∑7
τ=4 u(c(τ))

Φ3
5 = −3

5∑

t=5

e−
∑t
τ=1 u(c(τ))

−2 · e−
∑6
τ=5 u(c(τ))

−e−
∑7
τ=5 u(c(τ))

At time T = 6 generation 1 is no longer in existence, while is the last period
for generation 2

Φ3
6 = −2 · e−

∑6
τ=6 u(c(τ))

−e−
∑7
τ=6 u(c(τ))

At time T = 7 only generation 3 is left

Φ3
7 = −e−

∑7
τ=7 u(c(τ))

4.2.1 Log utility

If u(c) = ln (c) and consumption is constant and equal to 1 then u(c) = 0,
the discount factor (13) is constant and equal to 1, so that impatience is only
affected by future consumption sequences, and a very simple sequence of future
utilities obtains

Φ3
1 = −

5∑

t=1

e−
∑t
τ=1 ln(1) = −

5∑

t=1

e0

= −5 · 1
= −5
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Φ3
2 = −2

5∑

t=2

e−
∑t
τ=2 ln(1) − e−

∑6
τ=2 ln(1)

= −2
5∑

t=2

e0 − e0

= −2 · 4− 1

= −9

Φ3
3 = −3

5∑

t=3

e−
∑t
τ=1 ln(1)

−2 · e−
∑6
τ=3 ln(1)

−e−
∑7
τ=3 ln(1)

= −3
5∑

t=3

e0

−2 · e0

−e0
= −3 · 3
−2 · 1
−1

= −12

Φ3
4 = −3

5∑

t=4

e−
∑t
τ=1 ln(1)

−2 · e−
∑6
τ=4 ln(1)

−e−
∑7
τ=4 ln(1)

= −3
5∑

t=4

e0

−3 · e0

−e0
= −3 · 2
−2 · 1
−1

= −9
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Φ3
5 = −3

5∑

t=5

e−
∑t
τ=1 ln(1)

−3 · e−
∑6
τ=5 ln(1)

−e−
∑7
τ=5 ln(1)

Φ3
5 = −3

5∑

t=5

e0

−2 · e0

−e0
= −3 · 1
−2 · 1
−1

= −6

Aggregate impatience decreases as more generations with longer sequences
of future consumption levels come into existence until T = 3. From T = 4 they
become fewer and older, monotonically increasing aggregate impatience to its
maximum value in T = 7, before the last generation becomes extinct.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

T

ρ

Impatience

Figure 1: Impatience dynamics with three five periods lived generations
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Table 1: Sequence of impatience rates
T ΦT3 ρ
1 -5 0.2
2 -9 0.1111111
3 -12 0.0833333
4 -9 0.1111111
5 -6 0.1666666667
6 -3 0.3333333
7 -1 1

4.2.2 More generations

When the number of generations is extended to n = 30, with life expectancy
of T = 50 periods, the population exists over a time span of 80 periods, the
following dynamics of aggregate impatience obtains

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

T

ρ

Impatience

Figure 2: Impatience dynamics with thirty generations

The dynamics of impatience is a negative function of the number of gen-
erations alive, with impatience decreasing to a minimum when all generations
are in existence and increasing as generations disappear. Thus, a “J” shaped
dynamics unfolds with time, as the saving rate increases when younger genera-
tions come into existence and impatience eventually increases with population
shrinking (because of ageing of finitely lived individuals).
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4.3 Heterogeneous life expectancy at birth

Technological progress and economic development may enhance living standards
and improve quality of life to the extent of increasing life expectancy at birth for
newer generations. Different time horizons imply different discount rates across
generations.

5 Conclusions
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