In many modern data, the number of variables is much higher than the number of observations and the within-group scatter matrix is singular. Then, the Fisher's linear discriminant analysis (LDA) cannot be applied. The work considers a way to circumvent this problem by doing principal component analysis (PCA) enhanced with additional discriminating features. Two approaches are proposed: the original PCs are rotated to maximize the Fisher's LDA criterion, and second, penalized PCs are produced to achieve simultaneous dimension reduction and maximization of the Fisher's LDA criterion. Both approaches are illustrated and compared to other existing methods on several well known data sets.
Constraint principal components for linear discrimination
Trendafilov, N.
;Gallo, M.;Simonacci, V.;
2023-01-01
Abstract
In many modern data, the number of variables is much higher than the number of observations and the within-group scatter matrix is singular. Then, the Fisher's linear discriminant analysis (LDA) cannot be applied. The work considers a way to circumvent this problem by doing principal component analysis (PCA) enhanced with additional discriminating features. Two approaches are proposed: the original PCs are rotated to maximize the Fisher's LDA criterion, and second, penalized PCs are produced to achieve simultaneous dimension reduction and maximization of the Fisher's LDA criterion. Both approaches are illustrated and compared to other existing methods on several well known data sets.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0020025523009386-main.pdf
accesso solo dalla rete interna
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
518.88 kB
Formato
Adobe PDF
|
518.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.