Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems offer a new paradigm for querying and retrieving information, making the resource recovery processes more efficient and accurate due to their ability to learn and generate responses based on vast knowledge databases. This paper aims to demonstrate these systems in a simplified form to initiate a scientific discussion on the possibility of integrating these technologies into archival and bibliographic resource retrieval systems, and more broadly, into cultural heritage management.

Intelligenza artificiale, Large Language Models (LLMs) e Retrieval-Augmented Generation (RAG). Nuovi strumenti per l’accesso alle risorse archivistiche e bibliografiche

DI MARCANTONIO, Giorgia
2024-01-01

Abstract

Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems offer a new paradigm for querying and retrieving information, making the resource recovery processes more efficient and accurate due to their ability to learn and generate responses based on vast knowledge databases. This paper aims to demonstrate these systems in a simplified form to initiate a scientific discussion on the possibility of integrating these technologies into archival and bibliographic resource retrieval systems, and more broadly, into cultural heritage management.
File in questo prodotto:
File Dimensione Formato  
5.Saggi_Di+Marcantonio.pdf

accesso aperto

Descrizione: AI e Archivi
Tipologia: Altro materiale allegato
Licenza: Copyright dell'editore
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11574/241323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact