ARMA models are used as exploratory tools for identifying, estimating and forecasting for the Canadian lynx data, which have attained benchmark status in the time series literature since the work of Moran in 1953. This paper shows that the Full Range Autoregressive (FRAR) model, free from order determination processes, provides an acceptable alternative to the more widely adopted class of ARMA models.
Bayesian Prediction of canadian lynx data using FRAR model
GALLO, Michele;
2010-01-01
Abstract
ARMA models are used as exploratory tools for identifying, estimating and forecasting for the Canadian lynx data, which have attained benchmark status in the time series literature since the work of Moran in 1953. This paper shows that the Full Range Autoregressive (FRAR) model, free from order determination processes, provides an acceptable alternative to the more widely adopted class of ARMA models.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IJSE2010.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
64.37 kB
Formato
Adobe PDF
|
64.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.