Lo studio delle relazioni tra più variabili esplicative e più dipendenti spesso richiede l’utilizzo di metodi DRM, i quali si caratterizzano per la sostituzione delle variabili esplicative originali con un minor numero di variabili latenti ortogonali. L’obiettivo del presente lavoro è quello di fornire un’interpretazione di tali metodi in termini di regressione lineare semplice. L’approccio proposto è generalizzato al caso in cui vi sia una sola matrice di variabili esplicative e più matrici di variabili dipendenti.

The Role of Linear Regression in Dimensionality Reduction Methods

GALLO, Michele
2003-01-01

Abstract

Lo studio delle relazioni tra più variabili esplicative e più dipendenti spesso richiede l’utilizzo di metodi DRM, i quali si caratterizzano per la sostituzione delle variabili esplicative originali con un minor numero di variabili latenti ortogonali. L’obiettivo del presente lavoro è quello di fornire un’interpretazione di tali metodi in termini di regressione lineare semplice. L’approccio proposto è generalizzato al caso in cui vi sia una sola matrice di variabili esplicative e più matrici di variabili dipendenti.
File in questo prodotto:
File Dimensione Formato  
DAmbra-Amenta-Gallo.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 507.57 kB
Formato Adobe PDF
507.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11574/37627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact