The aim of this paper is to show the importance of Computational Stylometry (CS) and Machine Learning (ML) support in author’s gender and age detection in cyberbullying texts. We developed a cyberbullying detection platform and we show the results of performances in terms of Precision, Recall and F-Measure for gender and age detection in cyberbullying texts we collected

Computational Stylometry and Machine Learning for Gender and Age Detection in Cyberbullying Texts

Antonio Pascucci;Johanna Monti
2019-01-01

Abstract

The aim of this paper is to show the importance of Computational Stylometry (CS) and Machine Learning (ML) support in author’s gender and age detection in cyberbullying texts. We developed a cyberbullying detection platform and we show the results of performances in terms of Precision, Recall and F-Measure for gender and age detection in cyberbullying texts we collected
2019
978-1-7281-3891-6
File in questo prodotto:
File Dimensione Formato  
ACIIW_ESSEM_318.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 301.45 kB
Formato Adobe PDF
301.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ACII_2019_paper_copertina.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 71.91 kB
Formato Adobe PDF
71.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11574/188378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact