The aim of this paper is to show the importance of Computational Stylometry (CS) and Machine Learning (ML) support in author’s gender and age detection in cyberbullying texts. We developed a cyberbullying detection platform and we show the results of performances in terms of Precision, Recall and F-Measure for gender and age detection in cyberbullying texts we collected
Computational Stylometry and Machine Learning for Gender and Age Detection in Cyberbullying Texts
Antonio Pascucci;Johanna Monti
2019-01-01
Abstract
The aim of this paper is to show the importance of Computational Stylometry (CS) and Machine Learning (ML) support in author’s gender and age detection in cyberbullying texts. We developed a cyberbullying detection platform and we show the results of performances in terms of Precision, Recall and F-Measure for gender and age detection in cyberbullying texts we collectedFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ACIIW_ESSEM_318.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
301.45 kB
Formato
Adobe PDF
|
301.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ACII_2019_paper_copertina.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
71.91 kB
Formato
Adobe PDF
|
71.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.